计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (7): 121-129.DOI: 10.3778/j.issn.1002-8331.1912-0405
唐国智,李顶根
TANG Guozhi, LI Dinggen
摘要:
由于以往的行人跟踪方法大部分不能有效地解决目标被遮挡后以及目标尺寸变化再跟踪的问题,所以引入了深度学习的方法,但是经实验发现单纯使用深度学习行人跟踪会因行人检测部分的误差而出现整体的跟踪准确率不高的问题。提出了一种基于深度学习和时空约束后处理的行人跟踪方法,深度学习的行人检测部分采用了根据实际应用场景优化过的SSD算法,行人匹配部分采用了一种计算交叉输入领域差异然后进行块总结的方法,最后进行时空约束的后处理。在OTB数据集上做实验,与传统跟踪算法以及单纯深度学习算法进行了对比。