计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (7): 23-29.DOI: 10.3778/j.issn.1002-8331.1811-0210
马建红,张炳斐,张少光,刘双耀
MA Jianhong, ZHANG Bingfei, ZHANG Shaoguang, LIU Shuangyao
摘要: 新能源汽车命名实体存在实体边界模糊,多为未登录词,现存标注样本较少等问题,识别精确率和召回率较低。据此,提出了一种基于多通道神经网络(Multiple Channel Neural Network,MCNN)的新能源汽车实体识别模型,该模型融合了字词特征和片段特征,不再将实体识别当作传统的序列标注任务,利用半马尔科夫条件随机场(Semi-Markov CRF,SCRF)针对片段特征建模,对输入的句子切分片段并对片段整体分配标记,同时完成实体边界的识别和实体分类,弥补了传统字词序列标注模型采用局部标记区分实体边界的不足。为解决现存标注样本较少的问题,在训练模型的过程中,引入了一种基于不确定性和相似度相结合的主动学习(Active Learning,AL)。通过多组对比实验表明,该模型在大幅度减少人工标注量的同时,能够提高识别精确率和召回率。