计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (6): 162-168.DOI: 10.3778/j.issn.1002-8331.1510-0147
邱爱昆,朱嘉钢
QIU Aikun, ZHU Jiagang
摘要: 特征提取是模式识别中的关键问题之一,对提高系统分类性能具有重要意义。常用的特征提取方法包括主成分分析、线性鉴别分析、典型相关分析等等,多重集典型相关分析是基于传统的典型相关分析基础上发展而来,利用多组(大于2)特征数据集进行特征提取。基于集成学习的多重集典型相关分析的方法(EMCCA),是通过将样本化分成若干小的样本,形成若干个特征数据集,利用多重集典型相关分析对这组数据集做特征提取,并结合集成学习对样本进行分类。在UCI上的多特征手写体数据集上的实验结果表明:相比于传统的PCA,CCA特征提取方法,多重集典型相关分析具有更优的特征提取效果,结合集成学习后具有更好的分类效果。