计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (9): 247-254.DOI: 10.3778/j.issn.1002-8331.2002-0082
吴文龙,周喜,王轶,王保全
WU Wenlong, ZHOU Xi, WANG Yi, WANG Baoquan
摘要:
医保欺诈检测具有迫切的现实意义,当前工作主要以机器学习方法为主,但面临两个重要问题:(1)数据不平衡问题较为突出,欺诈样本占比极小,影响识别效果;(2)数据特征的选取与构造过于依赖领域业务知识,难以保证特征有效性。针对这些问题,提出了一种针对不平衡医保数据的欺诈检测方法——WKAG。使用WGAN-KDE(Wasserstein Generative Adversarial Network-Kernel Density Estimation)方法改善数据不平衡问题,结合自编码器(Auto-Encoder)提取数据的深层隐藏特征,使用Gradient Boosted Decision Tree(GBDT)检测医保欺诈行为。在多个公开数据集上验证了该方法有效性,并在真实医保业务数据集上进行了实验验证,结果表明了WKAG可作为医保欺诈行为的有效检测方法。