计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (14): 203-206.

• 图形图像处理 • 上一篇    下一篇

基于深度学习的图片敏感文字检测

吴财贵,唐权华   

  1. 江西师范大学 软件学院,南昌 330022
  • 出版日期:2015-07-15 发布日期:2015-08-03

Sensitive words detection in images based on deep learning

WU Caigui, TANG Quanhua   

  1. School of Software, Jiangxi Normal University, Nanchang 330022, China
  • Online:2015-07-15 Published:2015-08-03

摘要: 为快速检测图片文字中的敏感词汇,引入深度学习的方法进行文字检测和识别。对图片预处理,对连通区域进行标记;利用两层限制玻尔兹曼机(RBM)对连通区域进行文字区域的判别和选取;利用水平投影和区域生长的方法对得到的文字区域进行字符的分割;用BP神经网络算法和深信度网络(DBN)算法结合对敏感信息进行检测。敏感文字检测理论分析和实验数据表明该方法的算法复杂度低,检测速度快。

关键词: 图像处理, 文字区域提取, 敏感词检测, 深度学习, 限制玻尔兹曼机, 深信度网络

Abstract: In order to detect the sensitive words in the images fast, the means of deep learning is introduced to detect and recognize the words. It pre-processes the images and labels the connected region, uses two Restricted Boltzmann Machine(RBM) to judge and selects the text area in the connected region. The horizontal projection and the regional generation is used to segment character of the acquired text area. The BP neural network algorithm combines with the Deep Belief Network(DBN) algorithm to detect the sensitive information. The analysis of the detection theory of sensitive words and experiment data show that the new algorithm has low complexity and fast detection speed.

Key words: image processing, text region extraction, sensitive word detection, deep learning, Restricted Boltzmann Machine(RBM), deep belief network