计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (12): 255-259.
杨 宇,欧阳洪,潘海洋,程军圣
YANG Yu, OUYANG Hong, PAN Haiyang, CHENG Junsheng
摘要: 针对多变量预测模型模式识别方法中的最小二乘拟合可能出现病态的问题,提出了基于岭回归的多变量预测模型(Ridge regression-Variable Predictive Model based Class Discriminate,RVPMCD)分类方法,该方法通过引入岭参数,降低其均方拟合误差,减小自变量间复共线性关系对参数估计的影响,改善了原方法中最小二乘回归拟合参数失真的现象,从而有望建立更加准确的预测模型。对滚动轴承的振动信号提取特征值,组成特征向量,采用RVPMCD方法对训练样本建立预测模型,利用RVPMCD所建立的预测模型进行模式识别。实验分析结果表明,基于岭回归的多变量预测模型分类方法可以更有效地对滚动轴承的工作状态和故障类型进行识别。