计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (3): 1-18.DOI: 10.3778/j.issn.1002-8331.1910-0221
余萍,曹洁
YU Ping, CAO Jie
摘要: 近年来,深度学习以其在特征提取与模式识别方面独特优势与潜力被广泛应用于众多领域,已取得显著进展,其在复杂工业系统故障诊断与预测中的研究属于新兴领域。对近年来深度学习及其在各领域发展的优秀综述文献以及主流的开源仿真工具平台进行了整理,同时介绍了五种典型的深度学习模型,包括自动编码器(Auto-Encoder,AE)、 深度置信网络(Deep Belief Networks,DBN)、 卷积神经网络(Convolutional Neural Networks,CNN)、 循环神经网络(Recurrent Neural Network,RNN)、生成对抗网络(Generative Adversarial Network,GAN);从研究背景、实现流程及研究动态等三个方面就深度学习在故障诊断与预测中的应用研究进行了归纳总结,对近年来这一领域发表的相关论文进行了系统的综述;从研究实际出发探讨了深度学习在故障诊断与预测领域应用中存在的问题、挑战及解决方法,并对未来值得继续研究的方向进行了展望。