计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (12): 273-278.DOI: 10.3778/j.issn.1002-8331.1904-0256
• 工程与应用 • 上一篇
王得雪,林意,陈俊杰
WANG Dexue, LIN Yi, CHEN Junjie
摘要:
针对单个分类器方法在滚动轴承故障诊断中精度较低、故障样本标记稀缺、特征空间维度高等问题,提出一种将协同训练与集成学习相结合的Co-Forest轴承故障诊断算法。Co-Forest是半监督学习中的协同训练算法,包含多个基分类器,通过投票实现协同训练中的置信度估算。从滚动轴承的振动信号中提取时域、频域特征指标。利用少量带标签和大量未标记样本重复地训练基分类器。集成基分类器,实现对滚动轴承故障的诊断。实验结果表明,与同类型的协同训练算法(Co-Training、Tri-Training)相比,Co-Forest算法在轴承故障诊断中具有更高的正确率,与当前针对特征向量高维、标记样本稀缺问题的ISS-LPP算法,SS-LLTSA算法相比,Co-Forest算法在保持很高诊断正确率的情况下,不需要降维、参数设置简单,具有一定的实际应用价值。