计算机工程与应用 ›› 2006, Vol. 42 ›› Issue (31): 16-.

• 博士论坛 • 上一篇    

n值Lkasiewicz命题逻辑中命题的?琢-真度理论

李骏、王国俊

  

  1. 1.陕西师范大学数学与信息科学学院;2.兰州理工大学理学院
  • 收稿日期:2006-05-16 修回日期:1900-01-01 出版日期:2006-11-01 发布日期:2006-11-01
  • 通讯作者: 李骏 frank_lijun frank_lijun

Theory of α-Truth Degrees in n-valued Lukasiewicz propositional Logic

Jun Li,Guojun Wang   

  1. 1.陕西师范大学数学与信息科学学院;2.兰州理工大学理学院
  • Received:2006-05-16 Revised:1900-01-01 Online:2006-11-01 Published:2006-11-01
  • Contact: Jun Li

摘要: 基于均匀概率空间的无穷乘积,在n值Lukasiewicz逻辑系统中引入命题的α-真度理论,给出了一般真度推理规则;利用命题的α-真度定义了命题间的α-相似度, 进而导出命题集上的一种伪距离,使得在n值命题逻辑系统中展开近似推理成为可能.

关键词: α-真度, 真度, 相似度, 伪距离, 近似推理

Abstract: By means of the infinite product of evenly distributed probability space, this paper introduces the theory of α-truth degrees in n-valued Lukasiewicz logical system, also, general reference rules with truth degrees are obtained. Moreover, a pseudo-metric on the set of propositions is defined by means of the concept of truth degrees of propositions and this make it possible to develop approximate reasoning in n-valued proposition logic.

Key words: α-Truth degree, Truth degree, Similarity degree, Pseudo-metric, Approximate reasoning