计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (8): 198-203.DOI: 10.3778/j.issn.1002-8331.2009-0114
张晓闻,任勇峰
ZHANG Xiaowen, REN Yongfeng
摘要:
为了解决图像匹配算法中存在的匹配效率低、时间复杂度与计算量高等问题,通过结合稀疏表示和拓扑相似性,提出了一种图像匹配算法。该算法先对图像进行特征检测,计算轮廓相似度,找到待匹配图像中相似的最大轮廓区域,用稀疏编码对轮廓内特征进行稀疏表示,建立稀疏模型,将复杂特征变得单一化,但又不影响特征的分类方式,将相同类别或者相同属性的特征归为同一特征集,结合稀疏表示和邻域互信息的类属属性学习。计算得到变换矩阵,用以表示图像。利用结构化的拓扑相似性,对轮廓内外相关联的点进行优化。最后,分别从主观评价和客观评价两个方面对算法进行分析,结果表明提出的新算法与其他图像匹配算法相比较,具有明显匹配精度与效果,提出的算法在提高匹配效率及复杂度等方面具有较好优势。