计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (16): 228-236.DOI: 10.3778/j.issn.1002-8331.2005-0157
蔡秀梅,卞静伟,吴成茂,王妍
CAI Xiumei, BIAN Jingwei, WU Chengmao, WANG Yan
摘要:
针对现有的Harris角点提取算法在图像匹配法中,存在精度低、抗干扰和抗光照变化能力弱的缺陷,提出一种基于局部二进制模式(Local Binary Patterns,LBP)和图变换匹配算法(Graph Transformation Matching,GTM)相结合的鲁棒精确匹配算法。采用改进的Harris边缘特征检测提取特征点并选取图像块作为特征区域;采用改进的中心对称局部二进制模式(Center Symmetric Local Binary Patterns,CSLBP)对高维特征进行降维生成24维特征描述子,并依据欧氏距离实现图像粗匹配;采用图变化匹配法剔除误差匹配来改善匹配的精度和鲁棒性。测试结果表明,所建议算法是有效的,它不仅具有良好的抗尺度和旋转变化特性,而且具有较强的噪声抑制能力和抗光照变化能力。提出的鲁棒性算法不仅充分考虑到传统特征匹配算法优缺点,使检测与匹配结果更加准确,而且较Harris算法以及LBP算法稳定性和准确度有了明显的提高。