计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (1): 196-202.DOI: 10.3778/j.issn.1002-8331.1809-0317
卢鹏,卢奇,邹国良,王振华,侯倩
LU Peng, LU Qi, ZOU Guoliang, WANG Zhenhua, HOU Qian
摘要: 针对SIFT(Scale Invariant Feature Transform)算法计算复杂度高,运行时间长的问题,提出了一种改进的SIFT算法。通过扩大极值点取值范围,减少极值点数量,提高运算速度;采用12环的圆形窗口代替传统的方形窗口,简化了特征描述符的构造方法,生成78维SIFT特征描述符,进一步提高了算法的运算速度;将BBF(Best Bin First)运用到特征点对之间初次配准的搜索中,并用RANSAC(Random Sample Consensus)算法对特征点配准对进行二次处理,以消除错误配准。将改进的SIFT算法与渐入渐出融合算法相结合,实现对时间序列图像的拼接融合处理。针对拼接融合后的图像,采用局部分块检测的方法评价其效果。实验结果表明,该算法运算速度快,具有较高的鲁棒性,且拼接融合效果好。