计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (3): 181-186.DOI: 10.3778/j.issn.1002-8331.2008-0125
曹东伟,李邵梅,陈鸿昶
CAO Dongwei, LI Shaomei, CHEN Hongchang
摘要: 服务类网站的用户评价是消费者选择的重要参考,受商业利益的驱使,点评网站上充斥着大量不符合产品真实特性的评论,虚假评论的检测与治理,对于监督网站运营,净化网络环境具有重要的意义。为了提升虚假评论的检测结果,在基于词和文档构建的图神经网络进行文本分类的基础上,提出基于融合语义相似度的图卷积网络(sematic-graph convolution networks)的虚假评论检测方法。基于PMI(pointwise mutual information)指数以及基于词嵌入度量的语义相似度构建词与词之间的连边,基于TF-IDF特征值构建词与评论之间的连边;利用图神经网络的传递特征对上述构建的词汇-评论异质文本图中的节点特征信息进行聚合和抽取,捕获词与评论节点之间的高阶特征信息实现分类。在公开数据集上,相对于CNN、LSTM及Text-GCN,提出方法的准确率分别提升7%、4.8%和1.3%。