计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (13): 27-35.DOI: 10.3778/j.issn.1002-8331.2111-0411
刘华玲,郭渊,马俊
出版日期:
2022-07-01
发布日期:
2022-07-01
LIU Hualing, GUO Yuan, MA Jun
Online:
2022-07-01
Published:
2022-07-01
摘要: 推荐算法通过历史数据发现用户的兴趣偏好,在数据资源中寻找用户的偏好信息,并对用户进行推荐。目前,推荐系统中的协同过滤算法在各领域应用广泛,由于数据稀疏性和冷启动,使得推荐质量有所下降,为提升推荐精度,有学者从相似度方向进行研究。总结了推荐系统中最广泛使用的协同过滤算法,以及推荐系统中常用的传统相似度算法;对比分析了基于Pearson相关系数的相似度、余弦相似度、修正的余弦相似度等的适用场景;从冷启动和数据稀疏等方面分析了相似度的研究现状,研究表明通过混合相似度计算用户相似性,提高了推荐质量。最后,总结了相关文献在改进后存在推荐效率低、复杂度增高的问题,在提高推荐精度和推荐效率方面对相似度改进进行了展望。
刘华玲, 郭渊, 马俊. 协同过滤中相似度算法研究进展[J]. 计算机工程与应用, 2022, 58(13): 27-35.
LIU Hualing, GUO Yuan, MA Jun. Research Progress of Similarity Algorithm in Collaborative Filtering[J]. Computer Engineering and Applications, 2022, 58(13): 27-35.
[1] GEORGE G,OSINGA E C,LAVIE D.Big data and data sciencemethods for management research[J].Academy of Management Journal,2016,59(5):1493-1507. [2] LOPS P,GEMMIS M D,SEMERARO G.Content-based recommender systems:State of the art and trends[M]//Recommender systems handbook.Boston:Springer,2011:73-105. [3] GUO G,ZHANG J,YORKE-SMITH N.A novel recommendation model regularized with user trust and item ratings[J].IEEE Transactions on Knowledge and Data Engineering,2016,28(7):1607-1620.. [4] YANG C,YU X,LIU Y,et al.Collaborative filtering with weighted opinion aspects[J].Neurocomputing,2016,210:185-196. [5] RESNICK P,IACOVOU N,SUCHAK M,et al.Group lens:An open architecture for collaborative filtering of net news[C]//Proceedings of the ACM Conference on Computer Supported Cooperative Work,1994:175-186. [6] 荣辉桂,火生旭,胡春华,等.基于用户相似度的协同过滤推荐算法[J].通信学报,2014,35(2):16-24. RONG H G,HUO S X,HU C H,et al.Collaborative filtering recommendation algorithm based on user similarity[J].Journal of Communications,2014,35(2):16-24. [7] LI J,XU W,WAN W,et al.Movie recommendation based on bridging movie feature and user interest[J].Journal of Computational Science,2018,26:128-134. [8] RASTIN N,JAHROMI M Z.Using content features to enhance the performance of user-based collaborative filtering[J].International Journal of Artificial Intelligence & Applications,2014,5(1):53-62. [9] XIA C,JIANG X,LIU S,et al.Dynamic item-based recommendation algorithm with time decay[C]//Proceedings of the International Conference on Natural Computation(ICNC 2010),2010:242-247. [10] LINDEN G,SMITH B,YORK J.Amazon.com recommendations:Item-to-item collaborative filtering[J].IEEE Internet Computing,2003,7(1):76-80. [11] 李华,张宇,孙俊华.基于用户模糊聚类的协同过滤推荐研究[J].计算机科学,2012,39(12):83-86. LI H,ZHANG Y,SUN J H.Research on collaborative filtering recommendation based on user fuzzy clustering[J].Computer Science,2012,39(12):83-86. [12] NAJAFABADI M K,MAHRIN M N,CHUPRAT S,et al.Improving the accuracy of collaborative filtering recommendations using clustering and association rules mining on implicit data[J].Computers in Human Behavior,2017,67:113-128. [13] LI Z L,HUANG M X,ZHANG Y.A collaborative filtering algorithm of calculating similarity based on item rating and attributes[C]//Proceedings of the 2017 14th Web Information Systems and Applications Conference(WISA),2017:215-218. [14] 王刚,郭雪梅.融合用户行为分析和兴趣序列相似性的个性化推荐方法研究[J].情报理论与实践,2019,42(7):119-125. WANG G,GUO X M.Research on personalized recommendation method integrating user behavior analysis and interest sequence similarity[J].Information Theory and Practice,2019,42(7):119-125. [15] AGRAWAL R,IMIELI?SKI T,SWAMI A.Mining association rules between sets of items in large databases[C]//Proceedings of the ACMSIGMOD International Conference on Management of Data,1993. [16] 周鲲.基于用户相似度的协同过滤推荐算法研究[D].成都:西南交通大学,2016. ZHOU K.Research on collaborative filtering recommendation algorithm based on user similarity[D].Chengdu:Southwest Jiaotong University,2016. [17] 樊艳清,梁宏宇,纪佳琪.协同过滤算法中相似度计算问题研究[J].计算机技术与发展,2020,30(8):91-96. FAN Y Q,LIANG H Y,JI J Q.Research on similarity calculation in collaborative filtering algorithm[J].Computer Technology and Development,2020,30(8):91-96. [18] 刘畅,王玉龙.推荐系统冷启动问题分析[J].电信网技术,2017(1):65-68. LIU C,WANG Y L.Analysis of cold start of recommendation system[J].Telecom Network Technology,2017(1):65-68. [19] AHN H J.A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem[J].Information Sciences,2008,178(1):37-51. [20] LIU H,HU Z,MIAN A,et al.A new user similarity model to improve the accuracy of collaborative filtering[J].Knowledge-Based Systems,2014,56:156-166. [21] LI Z,ZHANG L.Fast neighbor user searching for neighborhood-based collaborative filtering with hybrid user similarity measures[J].Soft Computing,2021(1):1-16. [22] BOBADILLA J,SERRADILLA F,BERNAL J.A new collaborative filtering metric that improves the behavior of recommender systems[J].Knowledge-Based Systems,2010,23(6):520-528. [23] BAG S,KUMAR S K,TIWARI M K.An efficient recommendation generation using relevant Jaccard similarity[J].Information Sciences,2019,483:53-64. [24] AJAEGBU C.An optimized item-based collaborative filtering algorithm[J].Journal of Ambient Intelligence and Humanized Computing,2021,12:10629-10636. [25] 谭学清,张磊,黄翠翠,等.融合领域专家信任与相似度的协同过滤推荐算法研究[J].现代图书情报技术,2016(7):101-109. TAN X Q,ZHANG L,HUANG C C,et al.A collaborative filtering and recommendation algorithm using trust of domain-experts and similarity[J].New Technology of Library and Information Service,2016(7):101-109. [26] 韩胜宝,伊华伟,李晓会,等.基于融合相似度和层次聚类的冷启动推荐算法[J].小型微型计算机系统,2021(8):1-8. HAN S B,YI H W,LI X H,et al.Cold start recommendation algorithm based on fusion similarity and hierarchical clustering[J].Journal of Chinese Computer Systems,2021(8):1-8. [27] RAJENDRAN D P D,SUNDARRAJ R P.Using topic models with browsing history in hybrid collaborative filtering recommender system:Experiments with user ratings[J].International Journal of Information Management Data Insights,2021(1):100027. [28] WANG Y,WANG P,LIU Z,et al.A new item similarity based on α-divergence for collaborative filtering in sparse data[J].Expert Systems with Applications,2021,166:114074. [29] PATRA B K,LAUNONEN R,OLLIKAINEN V,et al.Exploiting Bhattacharyya similarity measure to diminish user cold-start problem in sparse data[C]//Proceedings of the International Conference on Discovery Science,2014. [30] PIRASTEH P,HWANG D,JUNG J E.Weighted similarity schemes for high scalability in user-based collaborative filtering[J].Mobile Networks & Applications,2015,20(4):497-507. [31] DENG J,GUO J,WANG Y.A novel K-medoids clustering recommendation algorithm based on probability distribution for collaborative filtering[J].Knowledge-Based Systems,2019,175:96-106. [32] 黄裕洋,金远平.一种综合用户和项目因素的协同过滤推荐算法[J].东南大学学报(自然科学版),2010,40(5):917-921. HUANG Y Y,JIN Y P.A collaborative filtering recommendation algorithm integrating user and project factors[J].Journal of Southeast University(Natural Science Edition),2010,40(5):917-921. [33] SONG Y T,WU S.Slope one recommendation algorithm based on user clustering and scoring preferences[J].Procedia Computer Science,2020,166:539-545. [34] 向小东,黄飘,邱梓咸.基于综合相似度加权Slope one算法的协同过滤算法[J].统计与决策,2020,36(24):10-14. XIANG X D,HUANG P,QIU Z X.Collaborative filtering algorithm based on comprehensive similarity weighted Slope one algorithm[J].Statistics and Decision,2020,36(24):10-14. [35] 向小东,邱梓咸.基于相似度优化偏差计算的Slope-one算法研究[J].统计与决策,2019,35(17):14-18. XIANG X D,QIU Z X.Study on Slope-one algorithm based on similitude optimization deviation calculation[J].Statistics and Decision,2019,35(17):14-18. [36] 田松瑞.基于用户相似度加权的Slope one算法[J].软件,2016,37(4):57-59. TIAN S R.Slope one algorithm weighted by user similarity[J].Computer Engineering & Software,2016,37(4):57-59. [37] 李桃迎,李墨,李鹏辉.基于加权Slope one的协同过滤个性化推荐算法[J].计算机应用研究,2017,34(8):2264-2268. LI T Y,LI M,LI P H.Personalized collaborative filtering recommendation algorithm based on weighted Slope one[J].Application Research of Computers,2017,34(8):2264-2268. [38] YING Y,CAO Y.Collaborative filtering recommendation combining FCM and Slope one algorithm[C]//Proceedings of the International Conference on Informative and Cybernetics for Computational Social Systems(ICCSS),2015. [39] THAKKAR P,VARMA K,UKANI V,et al.Combining user-based and item-based collaborative filtering using machine learning[J].Information and Communication Technology for Intelligent Systems,2019,107:173-180. [40] KOREN Y,BELL R,VOLINSKY C.Matrix factorization techniques for recommender systems[J].Computer,2009,42(8):30-37. [41] KOREN Y.Collaborative filtering with temporal dynamics[J].Communications of the ACM,2010,53(4):89-97. [42] MA T,GUO L,TANG M,et al.A collaborative filtering recommendation algorithm based on hierarchical structure and time awareness[J].IEICE Transactions on Information & Systems,2016,99(6):1512-1520. [43] 吕学强,王腾,李雪伟,等.基于内容和兴趣漂移模型的电影推荐算法研究[J].计算机应用研究,2018,35(3):717-720. LV X Q,WANG T,LI X W,et al.Research on film recommendation algorithm based on content and interest drift model[J].Application Research of Computers,2018,35(3):717-720. [44] 张应辉,司彩霞.基于用户偏好和项目特征的协同过滤推荐算法[J].计算机技术与发展,2017,27(1):16-19. ZHANG Y H,SI C X.A collaborative filtering algorithm based on interest of user and attributes of item[J].Computer Technology and Development,2017,27(1):16-19. [45] CHEN H,SUN H,CHENG M,et al.A recommendation approach for rating prediction based on user interest and trust value[J].Computational Intelligence and Neuroscience,2021(9):1-9. [46] 王云超,刘臻.融合用户对项目和属性偏好的协同过滤算法[J].计算机科学,2018,45(S2):422-426. WANG Y C,LIU Z.Collaborative filtering algorithm integrating user preferences for items and attributes[J].Computer Science,2018,45(S2):422-426. [47] 王道平,蒋中杨,张博卿.基于灰色关联分析和时间因素的协同过滤算法[J].数据分析与知识发现,2018,2(6):102-109. WANG D P,JIANG Z Y,ZHANG B Q.Collaborative filtering algorithm based on grey correlation analysis and time factor[J].Data Analysis and Knowledge Discovery,2018,2(6):102-109. [48] 陈海涛,宋姗姗,李同强.基于用户的改进的协同过滤推荐算法[J].情报理论与实践,2015,38(9):100-103. CHEN H T,SONG S S,LI T Q.User based improved collaborative filtering recommendation algorithm[J].Information Studies:Theory & Application,2015,38(9):100-103. [49] 朱思丞,黄瑛,孙志锋.推荐算法时间动态特性研究进展[J].工业控制计算机,2015,28(8):99-100. ZHU S C,HUANG Y,SUN Z F.Research on progress of time-based dynamic recommender system[J].Industrial Control Computer,2015,28(8):99-100. [50] 武建新,张志鸿.融合用户评分与显隐兴趣相似度的协同过滤推荐算法[J].计算机科学,2021,48(5):147-154. WU J X,ZHANG Z H.Collaborative filtering recommendation algorithm based on user rating and similarity of explicit and implicit interest[J].Computer Science,2021,48(5):147-154. [51] 魏慧娟,戴牡红.融合评分差异和兴趣相似性的协同过滤推荐算法[J].计算机科学,2018,45(S1):411-414. WEI H J,DAI M H.Collaboration filtering recommendation algorithm based on ratings difference and interest similarity[J].Computer Science,2018,45(S1):411-414. [52] 李永超,罗军.基于用户部分特征的协同过滤算法[J].计算机系统应用,2017,26(3):204-208. LI Y C,LUO J.Collaborative filtering algorithm based on user partial feature[J].Computer Systems & Applications,2017,26(3):204-208. [53] 程文娟,刘云海.融合项目因素的用户部分特征协同过滤算法[J].计算机科学与应用,2018,8(11):1689-1695. CHENG W J,LIU Y H.User partial feature collaborative filtering algorithm integrating project factors[J].Computer Science and Application,2018,8(11):1689-1695. [54] CHEN L,YUAN Y,YANG J,et al.Improving the prediction quality in memory-based collaborative filtering using categorical features[J].Electronics,2021,10(2):214. [55] CHEN H,YAN W,SUN H,et al.Tag-extended collaborative filtering recommendation algorithm[J].SN Computer Science,2020,1(5):302. [56] 张小川,周泽红,向南,等.基于关联规则的协同过滤改进算法[J].重庆理工大学学报(自然科学),2019,33(3):161-168. ZHANG X C,ZHOU Z H,XIANG N,et al.Improved collaborative filtering algorithm based on association rules[J].Journal of Chongqing University of Technology(Natural Science),2019,33(3):161-168. [57] 向程冠,熊世桓,王东,等.基于关联规则与相似度的社交好友推荐算法[J].计算机工程,2019,45(4):181-186. XIANG C G,XIONG S H,WANG D,et al.Social friend recommendation algorithm based on association rules and similarity[J].Computer Engineering,2019,45(4):181-186. [58] 胡文江,胡大伟,高永兵,等.基于关联规则与标签的好友推荐算法[J].计算机工程与科学,2013,35(2):109-113. HU W J,HU D W,GAO Y B,et al.Friend recommendation algorithm based on association rules and tags[J].Computer Engineering and Science,2013,35(2):109-113. [59] 纪文璐,王海龙,苏贵斌,等.基于关联规则算法的推荐方法研究综述[J].计算机工程与应用,2020,56(22):33-41. JI W L,WANG H L,SU G B,et al.Review of recommendation methods based on association rule algorithm[J].Computer Engineering and Applications,2020,56(22):33-41. |
[1] | 王永贵, 李昕. 融合狼群算法和模糊聚类的混合推荐算法[J]. 计算机工程与应用, 2022, 58(5): 104-111. |
[2] | 张岐山, 朱猛. 融合时间加权信任与用户偏好的协同过滤算法[J]. 计算机工程与应用, 2022, 58(3): 112-118. |
[3] | 王英博, 韩国淼, 王铭泽. 基于子空间聚类的协同过滤推荐算法[J]. 计算机工程与应用, 2022, 58(3): 127-134. |
[4] | 曹东伟, 李邵梅, 陈鸿昶. 基于GCN的虚假评论检测方法[J]. 计算机工程与应用, 2022, 58(3): 181-186. |
[5] | 陈丹华, 王艳娜, 周子力, 赵晓函, 李天宇, 王凯莉. 基于Word2Vec的WordNet词语相似度计算研究[J]. 计算机工程与应用, 2022, 58(3): 222-229. |
[6] | 王永贵, 蔡永旺, 王阳. 融合多语义信任度与全局信息的混合推荐算法[J]. 计算机工程与应用, 2022, 58(13): 102-111. |
[7] | 唐焕玲, 卫红敏, 王育林, 朱辉, 窦全胜. 结合LDA与Word2vec的文本语义增强方法[J]. 计算机工程与应用, 2022, 58(13): 135-145. |
[8] | 黄金杰, 赵轩伟, 张昕尧, 马敬评, 史宇奇. 基于领域知识图谱的短文本实体链接[J]. 计算机工程与应用, 2022, 58(1): 165-174. |
[9] | 张岐山,陈露露. 基于均衡接近度灰关联的Slope One算法[J]. 计算机工程与应用, 2021, 57(9): 96-102. |
[10] | 王永贵,李倩玉. 基于KNN-GBDT的混合协同过滤推荐算法[J]. 计算机工程与应用, 2021, 57(9): 103-108. |
[11] | 张松灿,普杰信,司彦娜,孙力帆. 基于种群相似度的自适应改进蚁群算法及应用[J]. 计算机工程与应用, 2021, 57(8): 70-77. |
[12] | 张晓闻,任勇峰. 结合稀疏表示与拓扑相似性的图像匹配算法[J]. 计算机工程与应用, 2021, 57(8): 198-203. |
[13] | 杨芳,尹曦,司建辉,刘宏媛,汪雪. 基于侧重点聚类的数学表达式相似度计算方法[J]. 计算机工程与应用, 2021, 57(6): 88-93. |
[14] | 钱芸芸,杨文忠,姚苗,李海磊,柴亚闯. 融合主题相似度权重的主题社区发现模型[J]. 计算机工程与应用, 2021, 57(5): 107-114. |
[15] | 艾山·吾买尔,斯拉吉艾合麦提·如则麦麦提,西热艾力·海热拉,刘文其,吐尔根·依布拉音,汪烈军,瓦依提·阿不力孜. 带标记音节的双向维汉神经机器翻译方法[J]. 计算机工程与应用, 2021, 57(4): 161-168. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||