计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (17): 89-101.DOI: 10.3778/j.issn.1002-8331.2503-0307

• 目标检测专题 • 上一篇    下一篇

MBFE-DETR:多尺度边界特征增强下的无人机目标检测算法

张晞,赖惠成,姜迪,汤静雯,高古学,袁婷婷,聂源   

  1. 1.新疆大学 计算机科学与技术学院,乌鲁木齐 830046
    2.新疆大学 新疆维吾尔自治区信号检测与处理重点实验室,乌鲁木齐 830046
    3.淮阴工学院 计算机与软件工程学院,江苏 淮安 223001
  • 出版日期:2025-09-01 发布日期:2025-09-01

MBFE-DETR: Multi-Scale Boundary Feature Enhancement for Drone Target Detection Algorithm

ZHANG Xi, LAI Huicheng, JIANG Di, TANG Jingwen, GAO Guxue, YUAN Tingting, NIE Yuan   

  1. 1.School of Computer Science and Technology, Xinjiang University, Urumqi 830046, China
    2.The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China
    3.College of Computer and Software Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu 223001, China
  • Online:2025-09-01 Published:2025-09-01

摘要: 针对无人机视角下背景复杂、小目标比例较高且样本不平衡等问题,提出一种基于改进RT-DETR的无人机目标检测算法MBFE-DETR。设计一种基于C2f和单头自注意力模块的轻量化主干网络,降低模型参数量的同时提升网络的特征提取能力。提出多尺度边界特征增强协同网络MBFECN,通过其特有的多尺度边界特征增强机制和高效特征融合策略,解决了原模型在保持小目标边界细节方面的不足。引入Focaler-MPDIoU考虑框的位置匹配关系,同时通过线性区间映射重构原有IoU损失,使模型在复杂场景下的定位效果更好。针对样本不平衡的问题,采用新的分类损失函数ESVLoss,对分类损失值进行分段加权调整,并结合指数移动平均机制对权重进行动态平滑更新,使模型更具适应性。实验结果表明,在VisDrone2019-DET和DOTAv1.0数据集上,MBFE-DETR算法的mAP50分别提升3.9和2.9个百分点,同时参数量减少了21.6%。

关键词: 无人机目标检测, RT-DETR, 单头自注意力, 边界特征增强

Abstract: Aiming at problems such as complex backgrounds, high proportion of small targets, and sample imbalance in drone perspective views, an improved drone object detection algorithm based on RT-DETR called MBFE-DETR is proposed. Firstly, a lightweight backbone network based on C2f and single-head self-attention modules is designed, reducing model parameters while enhancing feature extraction capabilities. Secondly, a multi-scale boundary feature enhancement collaborative network (MBFECN) is proposed, which addresses the original model’s deficiencies in preserving small target boundary details through its unique multi-scale boundary feature enhancement mechanism and efficient feature fusion strategy. Then, Focaler-MPDIoU is introduced to consider the positional matching relationship between bounding boxes, while reconstructing the original IoU loss through linear interval mapping, resulting in better localization performance in complex scenes. Finally, to address sample imbalance, a new classification loss function called ESVLoss is adopted, which applies segmented weighted adjustments to classification loss values and combines an exponential moving average mechanism to dynamically update weights smoothly, making the model more adaptive. Experimental results show that on the VisDrone2019-DET and DOTAv1.0 datasets, the MBFE-DETR algorithm improves mAP50 by 3.9 and 2.9 percentage points respectively, while reducing parameters by 21.6%.

Key words: UAV object detection, RT-DETR, single-head self-attention, boundary feature enhancement