[1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[2] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448.
[3] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
[4] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recogn-ition. Piscataway: IEEE, 2016: 779-788.
[5] LI C Y, LI L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[6] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[7] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[8] WANG C Y, YEH I H, LIAO H P. YOLOv9: learning what you want to learn using programmable gradient information[J]. arXiv:2402.13616, 2024.
[9] WANG A, CHEN H, LIU L H, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458, 2024.
[10] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2016: 21-37.
[11] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[12] ZHANG S F, WEN L Y, BIAN X, et al. Single-shot refinement neural network for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4203-4212.
[13] SAHIN O, OZER S. YOLODrone: improved YOLO architecture for object detection in drone images[C]//Proceedings of the 44th International Conference on Telecommunications and Signal Processing. Piscataway: IEEE, 2021: 361-365.
[14] 李成豪, 张静, 胡莉, 等. 基于多尺度感受野融合的小目标检测算法[J]. 计算机工程与应用, 2022, 58(12): 177-182.
LI C H, ZHANG J, HU L, et al. Small object detection algorithm based on multiscale receptive field fusion[J]. Computer Engineering and Applications, 2022, 58(12): 177-182.
[15] 聂源, 赖惠成, 高古学. 改进YOLOv7+Bytetrack的小目标检测与追踪[J]. 计算机工程与应用, 2024, 60 (12): 189-202.
NIE Y, LAI H C, GAO G X. Improved YOLOv7+Bytetrack small target detection and tracking[J]. Computer Engineering and Applications, , 2024, 60 (12): 189-202.
[16] 汤静雯, 赖惠成, 王同官. 远距离情形下的改进YOLOv8行人检测算法[J]. 计算机工程, 2025, 51(4): 303-313.
TANG J W, LAI H C, WANG T G. Improved YOLOv8 pedestrian detection algorithm for long-distance person[J]. Computer Engineering, 2025, 51(4): 303-313.
[17] TANG J W, LAI H C, GAO G X, et al. PFEL-Net: a lightweight network to enhance feature for multi-scale pedestrian detection[J]. Journal of King Saud University-Computer and Information Sciences, 2024, 36(8): 102198.
[18] WANG H, LIU J, ZHAO J, et al. Precision and speed: LSOD-YOLO for lightweight small object detection[J]. Expert Systems With Applications, 2025, 269: 126440.
[19] 李峻宇, 刘乾坤, 付莹. 融合注意力机制的红外小目标检测[J]. 航空学报, 2024, 45(14): 90-101.
LI J Y, LIU Q K, FU Y. Infrared small target detection based on attention mechanism[J]. China Industrial Economics, 2024, 45(14): 90-101.
[20] 张浩晨, 张竹林, 史瑞岩, 等. YOLO-CDC: 优化改进YOLOv8的车辆目标检测算法[J]. 计算机工程与应用, 2025, 61(13): 124-137.
ZHANG H C, ZHANG Z L, SHI R Y, et al. YOLO-CDC: improved YOLOv8 multi-scale vehicle object detection alg-orithm[J]. Computer Engineering and Applications, 2025, 61(13): 124-137.
[21] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[22] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 213-229.
[23] ZHU X Z, SU W J, LU L W, et al. Deformable DETR: deformable transformers for end-to-end object detection[J]. arXiv:2010.04159, 2020.
[24] LI F, ZHANG H, LIU S L, et al. DN-DETR: accelerate DETR training by introducing query DeNoising[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 13609-13617.
[25] ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16965-16974.
[26] MUZAMMUL M, ALGARNI A, GHADI Y Y, et al. Enhan-cing UAV aerial image analysis: integrating advanced SAHI techniques with real-time detection models on the VisDrone dataset[J]. IEEE Access, 2024, 12: 21621-21633.
[27] AKYON F C, ONUR ALTINUC S, TEMIZEL A. Slicing aided hyper inference and fine-tuning for small object dete-ction[C]//Proceedings of the IEEE International Conference on Image Processing. Piscataway: IEEE, 2022: 966-970.
[28] 张储, 徐伟悦, 杨如雪, 等. 一种基于优化后的RT-DETR模型的红花目标检测方法和装置: 202410039910[P]. 2024-04-09.
ZHANG C, XU W Y, YANG R X, et al. A method and device for detecting red flower targets based on an optimized RT-DETR model: 202410039910[P]. 2024-04-09.
[29] 李亦涵, 张秀再, 沈涛. 一种改进RT-DETR算法的遥感图像目标检测方法及系统: 202410609716[P]. 2024-06-14.
LI Y H, ZHANG X Z, SHEN T. An improved RT-DETR algorithm for remote sensing image object detection method and system: 202410609716[P]. 2024-06-14.
[30] ZHANG X, SONG Y, SONG T, et al. AKConv: convolutional kernel with arbitrary sampled shapes and arbitrary number of parameters[J]. arXiv:2311.11587, 2023.
[31] 胡佳乐, 周敏, 申飞. 面向无人机小目标的RTDETR改进检测算法[J]. 计算机工程与应用, 2024, 60(20): 198-206.
HU J L, ZHOU M, SHEN F. Improved detection algorithm of RTDETR for UAV small target[J]. Computer Engineering and Applications, 2024, 60(20): 198-206.
[32] YUN S, RO Y. SHViT: single-head vision transformer with memory efficient macro design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogn-ition. Piscataway: IEEE, 2024: 5756-5767.
[33] WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 1571-1580.
[34] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 658-666.
[35] ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586.
[36] ZHANG H, ZHANG S J. Focaler-IoU: more focused intersection over union loss[J]. arXiv:2401.01525, 2024.
[37] MA S, XU Y. MPDIoU: a loss for efficient and accurate bounding box regression[J]. arXiv:2307.07662, 2023.
[38] YU Z P, HUANG H B, CHEN W J, et al. YOLO-FaceV2: a scale and occlusion aware face detector[J]. Pattern Recogn-ition, 2024, 155: 110714.
[39] ZHU P F, DU D W, WEN L Y, et al. VisDrone-VID2019: the vision meets drone object detection in video challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop. Piscataway: IEEE, 2019: 227-235.
[40] XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018.
[41] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
[42] LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002.
[43] 尹泽宇, 杨波, 陈金令, 等. 基于STD-DETR的轻量化小目标检测算法[J]. 激光与光电子学进展, 2025, 62(8): 146-156.
YIN Z Y, YANG B, CHEN J L, et al. Lightweight small object detection algorithm based on STD-DETR[J]. Laser & Optoelectronics Progress, 2025, 62(8): 146-156.
[44] 向毅伟, 蒋瑜, 王琪凯, 等. 多尺度特征优化的实时Transformer在无人机航拍中的研究[J]. 计算机工程与应用, 2025, 61(9): 221-229.
XIANG Y W, JIANG Y, WANG K Q, et al. Research on real-time transformer for multi-scale feature optimization in drone aerial imaging[J]. Computer Engineering and Applications, 2025, 61(9): 221-229.
[45] 江旺玉, 王乐, 姚叶鹏, 等. 多尺度特征聚合扩散和边缘信息增强的小目标检测算法[J]. 计算机工程与应用, 2025, 61(7): 105-116.
JIANG W Y, WANG L, YAO Y P, et al. Small target detection algorithm based on multi-scale feature aggregation diffusion and edge information enhancement[J]. Computer Engineering and Applications, 2025, 61(7): 105-116.
[46] 潘玮, 韦超, 钱春雨, 等. 面向无人机视角下小目标检测的YOLOv8s改进模型[J]. 计算机工程与应用, 2024, 60(9): 142-150.
PAN W, WEI C, QIAN C Y, et al. Improved YOLOv8s model for small target detection from UAV perspective[J]. Computer Engineering and Applications, 2024, 60(9): 142-150. |