计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (17): 171-184.DOI: 10.3778/j.issn.1002-8331.2411-0064

• 理论与研发 • 上一篇    下一篇

动态视图融合矩阵驱动的多视图矩阵分解聚类算法

李顺勇,曹利娜,刘坤,赵兴旺   

  1. 1.山西大学 数学与统计学院,太原 030006
    2.山西大学 复杂系统与数据科学教育部重点实验室,太原 030006
    3.山西大学 计算机与信息技术学院,太原 030006 
    4.山西大学 计算智能与中文信息处理教育部重点实验室,太原 030006
  • 出版日期:2025-09-01 发布日期:2025-09-01

Multi-View Matrix Factorization Clustering Algorithm Based on Dynamic View Fusion Matrix

LI Shunyong, CAO Lina, LIU Kun, ZHAO Xingwang   

  1. 1.School of Mathematics and Statistics, Shanxi University, Taiyuan 030006, China 
    2.Key Laboratory of Complex Systems and Data Science of Ministry of Education, Shanxi University, Taiyuan 030006, China
    3.School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China
    4.Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Shanxi University, Taiyuan 030006, China
  • Online:2025-09-01 Published:2025-09-01

摘要: 多视图聚类能整合不同视图互补信息,揭示数据潜在结构。其中,基于矩阵分解的方法同时优化矩阵分解和聚类时复杂度较高,分开处理则导致聚类依赖固定的视图融合矩阵,会限制对复杂数据结构的表达。为此,提出了动态视图融合矩阵驱动的多视图矩阵分解聚类算法。该算法将矩阵分解与证据C均值聚类整合到一个框架中,并引入超参数平衡两部分重要性。先利用非负矩阵分解获取原始数据低维表示,随后通过智能权重分配机制对各视图融合。融合矩阵与聚类动态更新得到最终结果,这种动态更新策略能够避免依靠固定的融合矩阵实现聚类任务而导致的局限性。在5个真实数据集上验证了该算法的性能,结果证实了其优越性。

关键词: 多视图聚类, 矩阵分解, 智能权重分配机制, C-均值

Abstract: Multi-view clustering can integrate the complementary information of different views and reveal the underlying structure of data. Among them, the method based on matrix factorization has high complexity when optimizing matrix factorization and clustering at the same time, and the clustering depends on fixed view fusion matrix when processing separately, which will limit the expression of complex data structures. Therefore, multi-view matrix factorization clustering algorithm based on dynamic view fusion matrix is proposed. The algorithm integrates matrix factorization and evidence C-means clustering into one framework, and introduces the importance of hyperparameter balance. Firstly, the low-dimensional representation of the original data is obtained by non-negative matrix factorization, and then the views are fused by intelligent weight allocation mechanism. Finally, the fusion matrix and cluster are dynamically updated to get the final result. This dynamic update strategy can avoid the limitations caused by relying on fixed fusion matrix to realize the clustering task. The performance of the proposed algorithm is verified on 5 real data sets, and the results show its superiority.

Key words: multi-view clustering, matrix factorization, intelligent weight allocation mechanism, C-means