[1] YANG Z B, TAN Y H. The methods for improving large-scale multi-view clustering efficiency: a survey[J]. Artificial Intelligence Review, 2024, 57(6): 1-38.
[2] FU L L, LIN P F, VASILAKOS, et al. An overview of recent multi-view clustering[J]. Neurocomputing, 2020, 402: 148-161.
[3] WANG Y X, LIU X W, QI Y F, et al. A review of multi-view clustering algorithms[C]//Proceedings of the 2023 International Conference on Image Processing, Computer Vision and Machine Learning. New York: IEEE, 2023: 847-851.
[4] CHEN M S, LIN J Q, LI X L, et al. Representation learning in multi-view clustering: a literature review[J]. Data Science and Engineering, 2022, 7(3): 225-241.
[5] HARI S, MUHAMMA D, YUSOF F, et al. Breaking down multi-view clustering: a comprehensive review of multi-view approaches for complex data structures[J]. Engineering Applications of Artificial Intelligence, 2024, 132: 1-21.
[6] KUMAR A, RAI P, DAUME H. Co-regularized multi-view spectral clustering[C]//Advances in Neural Information Processing Systems , 2011: 1413-1421.
[7] WANG R, NIE F P, WANG Z, et al. Parameter-free weighted multi-view projected clustering with structured graph learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 32(10): 2014-2025.
[8] 余瑶, 杜世强, 宋金梅. 面向多视图聚类的低秩张量表示学习[J]. 计算机工程与应用, 2022, 58(13): 154-163.
YU Y, DU S Q, SONG J M. Low-rank tensor representation learning for multi-view clustering[J]. Computer Engineering and Applications, 2022, 58(13): 154-163.
[9] 黄展鹏, 吴杰康, 易法令. 自适应图融合的缺失多视图聚类算法[J]. 计算机工程与应用, 2023, 59(9): 176-181.
HUANG Z P, WU J K, YI F L. Incomplete multi-view clustering algorithm with adaptive graph fusion[J]. Computer Engineering and Applications, 2023, 59(9): 176-181.
[10] ZHANG T, LIU X, GONG L, et al. Late fusion multiple kernel clustering with local kernel alignment maximization[J]. IEEE Transactions on Multimedia, 2023, 25: 993-1007.
[11] ZHANG J P, LI L, WANG S W, et al. Multiple kernel clustering with dual noise minimization[C]//Proceedings of the 30th ACM International Conference on Multimedia. New York: ACM, 2022: 3440-3450.
[12] LI L, WANG S, LIU X, et al. Local sample-weighted multiple kernel clustering with consensus discriminative graph[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(2): 1721-1734.
[13] 郭圣, 仲兆满, 李存华. 基于深度自编码的多视图子空间聚类网络[J]. 计算机工程与应用, 2020, 56(17): 60-68.
GUO S, ZHONG Z M, LI C H. Multi-view subspace clustering network based on deep autoencoder[J]. Computer Engineering and Applications, 2020, 56(17): 60-68.
[14] LIU J, LIU X, YANG Y, et al. Multiview subspace clustering via co-training robust data representation[J]. IEEE Transa-ctions on Neural Networks and Learning Systems, 2022, 33(10): 5177-5189.
[15] LIU S Y, WANG S W, ZHANG P, et al. Efficient one-pass multi-view subspace clustering with consensus anchors[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 7576-7584.
[16] LIU J L, WANG C, GAO J, et al. Multi-view clustering via joint nonnegative matrix factorization[C]//Proceedings of the 2013 SIAM International Conference on Data Mining. New York: SDM, 2013: 252-260.
[17] LI S Y, JIANG Y, ZHOU Z H. Partial multi-view clustering[C]//Proceedings of the AAAI Conference on Artificial Inte-lligence, 2014: 1968-1974.
[18] ZONG L, ZHANG X, ZHAO L, et al. Multi-view clustering via multi-manifold regularized non-negative matrix factori-zation[J]. Neural Networks, 2017, 88: 74-89.
[19] KHAN G A, HU J, LI T R, et al. Weighted multi-view data clustering via joint non-negative matrix factorization[C]//Proceedings of the 2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering. Piscataway: IEEE, 2019: 1159-1165.
[20] XIANG J S, LI C H, YANG H J, et al. Dual auto-weighted multi-view clustering via autoencoder-like nonnegative matrix factorization[J]. Information Sciences, 2024, 667: 1-18.
[21] 徐霜, 余琍. 利用正则化矩阵分解技术的多视图聚类方法[J]. 计算机工程与应用, 2019, 55(14): 142-147.
XU S, YU Li. Regularized matrix factorization algorithm for multi-view data clustering[J]. Computer Engineering and Applications, 2019, 55(14): 142-147.
[22] KANG Z, SHI G, HUANG S, et al. Multi-graph fusion for multi-view spectral clustering[J]. Knowledge-Based Systems, 2020, 189: 1-9.
[23] JIANG K B, ZHOU S B, QIAN X Z, et al. Dynamic-fusion multi-view projection clustering algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1147-1156.
[24] 张衡, 谭晓阳, 金鑫. 基于多视图聚类的自然图像边缘检测[J]. 模式识别与人工智能, 2016, 29(2): 163-170.
ZHANG H, TAN X Y, JIN X. Multi-view clustering based natural image contour detection[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(2): 163-170.
[25] LIU X W, DOU Y, YIN J P, et al. Multiple Kernel k-means clustering with matrix-induced regularization[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016: 1888-1894.
[26] XU J L, HAN J W, NIE F P. Discriminatively embedded k-means for multi-view clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 5356-5364.
[27] XU J L, HAN J W, NIE F P, et al. Re-weighted discriminatively embedded k-means for multiview clustering[J]. IEEE Transactions on Image Processing, 2017, 26(6): 3016-3027.
[28] WANG X B, LEI Z, GUO X J, et al. Multi-view subspace clustering with intactness-aware similarity[J]. Pattern Recognition, 2019, 88: 50-63.
[29] LEE D D, SEUNG H S. Algorithms for non?negative matrix factorization[C]//Proceedings of the 13th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2000: 535-541.
[30] CHEN M S, HUANG L, WANG C D, et al. Relaxed multiview clustering in latent embedding space[J]. Information Fusion, 2021, 68: 8-21.
[31] WAN X H, LIU X W, LIU J Y, et al. Auto-weighted multi-view clustering for large-scale data[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2023: 10078-10086.
[32] LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401: 788-791.
[33] DING C, HE X F, SIMON H D. On the equivalence of nonnegative matrix factorization and spectral clustering[C]//Proceedings of the 2005 SIAM International Conference on Data Mining, 2005: 606-610.
[34] MASSON M H, DENOEUX T. ECM: an evidential version of the fuzzy C-means algorithm[J]. Pattern Recognition, 2007, 41(4): 1384-1397.
[35] NIE F P, LI J, LI X L, et al. Parameter-free auto-weighted multiple graph learning: a framework for multiview clustering and semi-supervised classific-ation[C]//Proceedings of International Joint Conference on Artificial Intelligence. New York: AAAI Press, 2016: 1881-1887.
[36] ZHAN K, ZHANG C, GUAN J, et al. Graph Learning for Multiview Clustering[J]. IEEE Transactions on Cybernetics, 2018, 48(10): 2887-2895.
[37] ZHAN K, NIE F P, WANG J, et al. Multiview consensus graph clustering[J]. IEEE Transactions on Image Processing,2018, 28(3): 1261-1270.
[38] TANG C, LI Z L, WANG J, et al. Unified one-step multi-view spectral clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(6): 6449-6460.
[39] ZHANG P, LIU X W, XIONG J, et al. Consensus one-step multi-view subspace clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34 (10): 4676-4689.
[40] WANG S W, LIU X W, ZHU X Z, et al. Fast parameter-free multi-view subspace clustering with consensus anchor guidance[J]. IEEE Transactions on Image Processing, 2021, 31: 556-568. |