[1] 蒋璐, 陈云伟. 多节点多关系的混合网络社团划分研究综述[J]. 图书情报工作, 2021, 65(19): 142-150.
JIANG L, CHEN Y W. A review of community detection in hybrid networks with multiple nodes and multiple relationships[J]. Library and Information Service, 2021, 65(19): 142-150.
[2] 李金海, 何有世, 张鹏. 融合情境语义推理及社会网络的团购推荐研究[J]. 计算机工程与应用, 2021, 57(18): 163-171.
LI J H, HE Y S, ZHANG P. Research of group recommendation based on contextual semantics reasoning and social network[J]. Computer Engineering and Applications, 2021, 57(18): 163-171.
[3] LIAO L, HE X, ZHANG H, et al. Attributed social network embedding[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(12): 2257-2270.
[4] KUMAR S, PANDA B S, AGGARWAL D. Community detection in complex networks using network embedding and gravitational search algorithm[J]. Journal of Intelligent Information Systems, 2021, 57: 51-72.
[5] CHEN D, NIE M, ZHANG H, et al. Network embedding algorithm taking in variational graph autoencoder[J]. Mathematics, 2022, 10(3): 485.
[6] LEE D, SEUNG H S. Algorithms for non-negative matrix factorization[C]//Proceedings of the 13th International Conference on Neural Information Processing Systems, 2000: 535-541.
[7] OUARET R, IONESCU A, RAMALHO O. Non-negative matrix factorization for the analysis of particle number concentrations: characterization of the temporal variability of sources in indoor workplace[J]. Building and Environment, 2021, 203: 108055.
[8] ZHAO Y, WANG C, PEI J, et al. Nonlinear loose coupled non-negative matrix factorization for low-resolution image recognition[J]. Neurocomputing, 2021, 443: 183-198.
[9] BLEE A L, DAY J C C, FLEWITT P E J, et al. Non‐negative assisted principal component analysis: a novel method of data analysis for raman spectroscopy[J]. Journal of Raman Spectroscopy, 2021, 52(6): 1135-1147.
[10] YUAN A, YOU M, HE D, et al. Convex non-negative matrix factorization with adaptive graph for unsupervised feature selection[J]. IEEE Transactions on Cybernetics, 2020, 52(6): 5522-5534.
[11] VANGARA R, BHATTARAI M, SKAU E, et al. Finding the number of latent topics with semantic non-negative matrix factorization[J]. IEEE Access, 2021, 9: 117217-117231.
[12] MEANEY C, ESCOBAR M, MOINEDDIN R, et al. Non-negative matrix factorization temporal topic models and clinical text data identify COVID-19 pandemic effects on primary healthcare and community health in Toronto, Canada[J]. Journal of Biomedical Informatics, 2022, 128: 104034.
[13] GOBIN M, NAZAROV P V, WARTA R, et al. A DNA repair and cell-cycle gene expression signature in primary and recurrent glioblastoma: prognostic value and clinical implications DNA repair and cell-cycle gene signature in GBM[J]. Cancer Research, 2019, 79(6): 1226-1238.
[14] AK?AY S, GüVEN E, AFZAL M, et al. Non-negative matrix factorization and differential expression analyses identify hub genes linked to progression and prognosis of glioblastoma multiforme[J]. Gene, 2022, 824: 146395.
[15] RAHMAN D A, LESTARI D P. COVID-19 classification using cough sounds[C]//Proceedings of the 2021 8th International Conference on Advanced Informatics: Concepts, Theory and Applications, 2021: 1-6.
[16] AN R, TONG Z, LIU X, et al. Post COVID-19 pandemic recovery of intracity human mobility in Wuhan: spatiotemporal characteristic and driving mechanism[J]. Travel Behaviour and Society, 2023, 31: 37-48.
[17] HARTIGAN J A, WONG M A. Algorithm AS136: a K-means clustering algorithm[J]. Journal of the Royal Statistical Society, 1979, 28(1): 100-108.
[18] WOLD S, ESBENSEN K, GELADI P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1/2/3): 37-52.
[19] LINDE Y, BUZO A, GRAY R. An algorithm for vectorquantizer design[J]. IEEE Transactions on Communications, 1980, 28(1): 84-95.
[20] 李乐, 章毓晋. 基于线性投影结构的非负矩阵分解[J]. 自动化学报, 2010, 36(1): 23-39.
LI L, ZHANG Y J. Linear projection-based non-negative matrix factorization[J]. Acta Automatica Sinica, 2010, 36(1): 23-39.
[21] 陆佳炜, 赵伟, 张元鸣, 等. 基于TWE-NMF主题模型的Mashup服务聚类方法[J]. 软件学报, 2023, 34(6): 2727-2748.
LU J W, ZHAO W, ZHANG Y M, et al. TWE-NMF topic model-based approach for Mashup service clustering[J]. Journal of Software, 2023, 34(6): 2727-2748.
[22] 周旭, 杨佳鹏, 俎毓伟, 等. 基于NMF-HGS-RF的瓦斯涌出量预测研究[J]. 矿业安全与环保, 2023, 50(3): 117-123.
ZHOU X, YANG J P, ZU Y W, et al. Gas emission prediction based on NMF-HGS-RF[J]. Mining Safety & Environmental Protection, 2023, 50(3): 117-123.
[23] 汤辉, 孟莎莎, 彭天亮, 等. 基于Hessian图正则稀疏NMF的高光谱解混[J]. 计算技术与自动化, 2023, 42(1): 153-159.
TANG H, MENG S S, PENG T L, et al. Hyperspectral unmixing based on Hessian graph regular sparse NMF[J]. Computing Technology and Automation, 2023, 42(1): 153-159.
[24] XU Y, CUI X, ZHANG L, et al. Metastasis-related gene identification by compound constrained NMF and a semisupervised cluster approach using pancancer multiomics features[J]. Computers in Biology and Medicine, 2022, 151: 106263.
[25] SCERRI M M, WEINBRUCH S, DELMAIRE G, et al. Exhaust and non-exhaust contributions from road transport to PM10 at a Southern European traffic site[J]. Environmental Pollution, 2023, 316: 120569.
[26] ZHANG Z Y, WANG Y, AHN Y Y. Overlapping community detection in complex networks using symmetric binary matrix factorization[J]. Physical Review E, 2013, 87(6): 062803.
[27] ZHANG H, KING I, LYU M. Incorporating implicit link preference into overlapping community detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2015.
[28] ZHANG H, ZHAO T, KING I, et al. Modeling the homophily effect between links and communities for overlapping community detection[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016: 3938-3944.
[29] LYU T, ZHANG Y, ZHANG Y. Enhancing the network embedding quality with structural similarity[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 2017: 147-156.
[30] RIBEIRO L F R, SAVERESE P H P, FIGUEIREDO D R. Struc2vec: learning node representations from structural identity[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017: 385-394.
[31] WU W, KWONG S, ZHOU Y, et al. Nonnegative matrix factorization with mixed hypergraph regularization for community detection[J]. Information Sciences, 2018, 435: 263-281.
[32] CHAKRABORTY T, DALMIA A, MUKHERJEE A, et al. Metrics for community analysis: a survey[J]. ACM Computing Surveys, 2017, 50(4): 1-37.
[33] WU H, GAO L, DONG J, et al. Detecting overlapping protein complexes by rough-fuzzy clustering in protein-protein interaction networks[J]. PloS One, 2014, 9(3): 91856.
[34] 潘磊, 金杰, 王崇骏, 等. 社会网络中基于局部信息的边社区挖掘[J]. 电子学报, 2012, 40(11): 2255-2263.
PAN L, JIN J, WANG C J, et al. Detecting link communities based on local information in social networks[J]. Acta Electronica Sinica, 2012, 40(11): 2255-2263.
[35] 黄发良, 张师超, 朱晓峰. 基于多目标优化的网络社区发现方法[J]. 软件学报, 2013, 24(9): 2062-2077.
HUANG F L, ZHANG S C, ZHU X F. Discovering network community based on multi-objective optimization[J]. Journal of Software, 2013, 24(9): 2062-2077.
[36] 辛宇, 杨静, 汤楚蘅, 等. 基于局部语义聚类的语义重叠社区发现算法[J]. 计算机研究与发展, 2015, 52(7): 1510-1521.
XIN Y, YANG J, TANG C H, et al. An overlapping semantic community detection algorithm based on local semantic cluster[J]. Journal of Computer Research and Development, 2015, 52(7): 1510-1521.
[37] NEWMAN M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69(6): 066133.
[38] GUIMERA R, NUNES AMARAL L A. Functional cartography of complex metabolic networks[J]. Nature, 2005, 433: 895-900.
[39] FORTUNATO S. Community detection in graphs[J]. Physics Reports, 2010, 486(3/4/5): 75-174.
[40] PEI Y, CHAKRABORTY N, SYCARA K. Nonnegative matrix tri-factorization with graph regularization for community detection in social networks[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence, 2015.
[41] WANG X, CUI P, WANG J, et al. Community preserving network embedding[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2017: 203-209.
[42] MA X, ZHANG R, GUO J, et al. A contrastive pre-training approach to discriminative autoencoder for dense retrieval[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management, 2022: 4314-4318.
[43] BOYD S, BOYD S P, VANDENBERGHE L. Convex optimization[M]. Cambridge: Cambridge University Press, 2004.
[44] DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(1): 1-22.
[45] WANG F, LI T, WANG X, et al. Community discovery using nonnegative matrix factorization[J]. Data Mining and Knowledge Discovery, 2011, 22: 493-521.
[46] ROZEMBERCZKI B, KISS O, SARKAR R. Karate Club: an API oriented open-source python framework for unsupervised learning on graphs[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management, 2020: 3125-3132.
[47] PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: machine learning in Python[J]. Journal of Machine Learning Research, 2011, 12: 2825-2830.
[48] ZHANG S, WANG R S, ZHANG X S. Uncovering fuzzy community structure in complex networks[J]. Physical Review E, 2007, 76(4): 046103.
[49] YE F, CHEN C, ZHENG Z. Deep autoencoder-like nonnegative matrix factorization for community detection[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018: 1393-1402.
[50] LI P Z, HUANG L, WANG C D, et al. EdMot: an edge enhancement approach for motif-aware community detection[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 479-487.
[51] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014: 701-710.
[52] GROVER A, LESKOVEC J. Node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016: 855-864.
[53] ROZEMBERCZKI B, DAVIES R, SARKAR R, et al. GEMSEC: graph embedding with self clustering[C]//Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 2019: 65-72.
[54] TORRES L, CHAN K S, ELIASSI-RAD T. GLEE: geometric laplacian eigenmap embedding[J]. Journal of Complex Networks, 2020, 8(2): 29154877. |