[1] LAN W, YANG T C, CHEN Q F, et al. Multiview subspace clustering via low-rank symmetric affinity graph[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(8): 11382-11395.
[2] 朱丹, 陈晓红, 吴卿源, 等. 自适应图学习诱导的子空间聚类[J]. 计算机工程与应用, 2020, 56(21): 30-37.
ZHU D, CHEN X H, WU Q Y, et al. Subspace clustering induced by adaptive graph learning[J]. Computer Engineering and Applications, 2020, 56(21): 30-37.
[3] 于晓, 刘慧, 林毓秀, 等. 一致性引导的自适应加权多视图聚类[J]. 计算机研究与发展, 2022, 59 (7): 1496-1508.
YU X, LIU H, LIN Y X, et al. Consensus guided auto-weighted multi-view clustering[J]. Journal of Computer Research and Development, 2022, 59(7): 1496-1508.
[4] WANG H, YANG Y, LIU B, et al. A study of graph-based system for multi-view clustering[J]. Knowledge-Based Systems, 2019, 163: 1009-1019.
[5] NIE F P, LI J, LI X L. Parameter-free auto-weighted multiple graph learning: a framework for multiview clustering and semi-supervised classification[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence, 2016: 1881-1887.
[6] ZONG L L, ZHANG X C, LIU X Y, et al. Weighted multi-view spectral clustering based on spectral perturbation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018: 4621-4628.
[7] ZHAN K, ZHANG C Q, GUAN J P, et al. Graph learning for multiview clustering[J]. IEEE Transactions on Cybernetics, 2018, 48(10): 2887-2895.
[8] QIN Y L, TANG Z J, WU H Z, et al. Flexible tensor learning for multi-view clustering with Markov chain[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(4): 1552-1565.
[9] XIE M Y, LIU X L, PAN G. Centralized joint sparse representation for multi-view subspace clustering[J]. Journal of Intelligent & Fuzzy Systems, 2020, 39(1): 1213-1226.
[10] WANG Y L, KOU K I, CHEN H, et al. Simultaneous robust matching pursuit for multi-view learning[J]. Pattern Recognition, 2023, 134: 109100.
[11] ZHOU T, ZHANG C, PENG X, et al. Dual shared-specific multiview subspace clustering[J]. IEEE Transactions on Cybernetics, 2020, 50(8): 3517-3530.
[12] 余瑶, 杜世强, 宋金梅. 面向多视图聚类的低秩张量表示学习[J]. 计算机工程与应用, 2022, 58(13):154-163.
YU Y, DU S Q, SONG J M. Low-rank tensor representation learning for multi-view clustering[J]. Computer Engineering and Applications, 2022, 58(13): 154-163.
[13] CHEN Y Y, XIAO X L, PENG C, et al. Low-rank tensor graph learning for multi-view subspace clustering[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(1): 92-104.
[14] 赵晓佳, 徐婷婷, 陈勇勇, 等. 基于一步张量学习的多视图子空间聚类[J]. 自动化学报, 2023, 49(1): 40-53.
ZHAO X J, XU T T, CHEN Y Y, et al. One-step tensor learning for multi-view subspace clustering[J]. Acta?Automatica?Sinica, 2023, 49(1): 40-53.
[15] ZHANG C Q, FU H Z, LIU S, et al. Low-rank tensor constrained multiview subspace clustering[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1582-1590.
[16] PAN B C, LI C D, CHE H J. Nonconvex low-rank tensor approximation with graph and consistent regularizations for multi-view subspace learning[J]. Neural Networks, 2023, 161: 638-658.
[17] WU J L, LIN Z C, ZHA H B. Essential tensor learning for multi-view spectral clustering[J]. IEEE Transactions on Image Processing, 2019, 28(12): 5910-5922.
[18] ZHANG Y, YANG W W, LIU B T, et al. Multi-view spectral clustering via tensor-SVD decomposition[C]//Proceedings of the IEEE 29th International Conference on Tools with Artificial Intelligence. Piscataway: IEEE, 2017: 493-497.
[19] XIE Y, TAO D C, ZHANG W S, et al. On unifying multi-view self-representations for clustering by tensor multi-rank minimization[J]. International Journal of Computer Vision, 2018, 126(11): 1157-1179.
[20] YANG M, LUO Q L, LI W, et al. Multiview clustering of images with tensor rank minimization via nonconvex approach[J]. SIAM Journal on Imaging Sciences, 2020, 13(4): 2361-2392.
[21] KANG Z, PENG C, CHENG J, et al. LogDet rank minimization with application to subspace clustering[J]. Computational Intelligence and Neuroscience, 2015, 2015: 824289.
[22] KANG Z, PENG C, CHENG Q. Robust subspace clustering via smoothed rank approximation[J]. IEEE Signal Processing Letters, 2015, 22(11): 2088-2092.
[23] GUO X. Exclusivity regularized machine[J]. arXiv:1603.
08318, 2016.
[24] BOYD S. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2010, 3(1): 1-122.
[25] VON LUXBURG U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4): 395-416.
[26] ZHAN K, NIE F P, WANG J, et al. Multiview consensus graph clustering[J]. IEEE Transactions on Image Processing, 2019, 28(3): 1261-1270.
[27] GAO Q X, XIA W, WAN Z Z, et al. Tensor-SVD based graph learning for multi-view subspace clustering[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 3930-3937.
[28] XIE D Y, XIA W, WANG Q Q, et al. Multi-view clustering by joint manifold learning and tensor nuclear norm[J]. Neurocomputing, 2020, 380: 105-114.
[29] VAN D M L, HINTON GEOFFREY. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(86): 2579-2605.
[30] LUO Q L, YANG M, LI W, et al. Hyper-Laplacian regularized multi-view clustering with exclusive L21 regularization and tensor log-determinant minimization approach[J]. ACM Transactions on Intelligent Systems and Technology, 2023, 14(3): 1-29. |