计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (19): 127-136.DOI: 10.3778/j.issn.1002-8331.2406-0368

• 模式识别与人工智能 • 上一篇    下一篇

基于层次数据增强的多维度特征融合社交媒体抑郁症识别

李世琪,刁宇峰,张浩,杨亮,林鸿飞,樊小超   

  1. 1.内蒙古民族大学 计算机科学与技术学院,内蒙古 通辽 028000
    2.大连理工大学 计算机科学与技术学院,辽宁 大连 116024
    3.新疆师范大学 计算机科学与技术学院,乌鲁木齐 830054
  • 出版日期:2025-10-01 发布日期:2025-09-30

Hierarchical Data Augmentation Based Multi-Dimensional Feature Fusion for Social Media Depression Recognition

LI Shiqi, DIAO Yufeng, ZHANG Hao, YANG Liang, LIN Hongfei, FAN Xiaochao   

  1. 1.School of Computer Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia 028000, China
    2.School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
    3.School of Computer Science and Technology, Xinjiang Normal University, Urumqi 830054, China
  • Online:2025-10-01 Published:2025-09-30

摘要: 抑郁症作为一种常见的精神障碍,因其数据样本稀缺且难以获取,抑郁识别任务在特征的捕获方面正面临极大挑战。提出了基于层次的数据增强技术,通过同义词替换和句法树结构调整方法生成新的抑郁文本,丰富抑郁数据集。在此基础上,构建了一个融合多维度特征的社交媒体抑郁症识别模型,该模型整合了文本的风格特征、情感特征和语境特征,并引入多头注意力机制,突出抑郁特征中的关键信息,从而对抑郁文本进行精准分类。实验结果表明,提出的方法有效扩充了样本数据,并在多维度上准确提取了抑郁特征,使得抑郁识别的准确率达到了92%,验证了模型的有效性。

关键词: 社交媒体, 抑郁症识别, 数据增强, 多维度特征

Abstract: Depression, a common mental disorder, poses significant challenges in feature extraction for recognition due to the scarcity of data samples. This study proposes a hierarchical data augmentation technique, generating new depressive text samples through synonym replacement and syntactic tree adjustment, enriching the dataset. A multidimensional feature fusion model for social media depression recognition is then constructed, integrating stylistic, emotional, and contextual features, with a multi-head attention mechanism emphasizing key depressive information for precise text classification. Experimental results show that this method effectively expands the sample data and accurately extracts depressive features, achieving a recognition accuracy of 92%, confirming the model’s effectiveness.

Key words: social media, depression recognition, data augmentation, multi-dimensional feature