[1] 杨权. 抑郁障碍的诊断与治疗[M]. 成都: 四川科学技术出版社, 2003.
YANG Q. Diagnosis and treatment of depressive disorder[M]. Chengdu: Sichuan Scientific & Technical Publishers, 2003.
[2] FRIEDMAN S. Depression: clinical, experimental, and theoretical aspects[J]. The Journal of the American Medical Association, 1968, 203(13): 1144.
[3] RAMIREZ-ESPARZA N, CHUNG C, KACEWIC E, et al. The psychology of word use in depression forums in English and in Spanish: testing two text analytic approaches[J]. Proceedings of the International AAAI Conference on Web and Social Media, 2008, 2(1): 102-108.
[4] SPITZER R L, WILLIAMS J B, GIBBON M, et al. The structured clinical interview for DSM-III-R (SCID). I: history, rationale, and description[J]. Archives of General Psychiatry, 1992, 49(8): 624-629.
[5] SHEEHAN D V, LECRUBIER Y, SHEEHAN K H, et al. The mini-international neuropsychiatric interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10[J]. J Clin Psychiatry, 1998, 59(S20): 22-33.
[6] MONTGOMERY S A, ASBERG M. A new depression scale designed to be sensitive to change[J]. British Journal of Psychiatry, 1979, 134: 382-389.
[7] BECK A T, STEER R A, CARBIN M G. Psychometric properties of the beck depression inventory: twenty-five years of evaluation[J]. Clinical Psychology Review, 1988, 8(1): 77-100.
[8] KROENKE K, SPITZER R L. The PHQ-9: a new depression diagnostic and severity measure[J]. Psychiatric Annals, 2002, 32(9): 509-515.
[9] MUKHIYA S K, AHMED U, RABBI F, et al. Adaptation of IDPT system based on patient-authored text data using NLP[C]//Proceedings of the 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems. Piscataway: IEEE, 2020: 226-232.
[10] REECE A G, REAGAN A J, LIX K L M, et al. Forecasting the onset and course of mental illness with Twitter data[J]. Scientific Reports, 2017, 7(1): 13006.
[11] 周莹. 多类型特征融合的抑郁倾向识别方法研究[D]. 济南: 山东师范大学, 2019.
ZHOU Y. Research on the identification method of depressive tendency based on multi-type feature fusion[D]. Jinan: Shandong Normal University, 2019.
[12] SEAL A, BAJPAI R, AGNIHOTRI J, et al. DeprNet: a deep convolution neural network framework for detecting depression using EEG[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 2505413.
[13] YANG L J, WANG Y X, ZHU X R, et al. A gated temporal-separable attention network for EEG-based depression recognition[J]. Computers in Biology and Medicine, 2023, 157: 106782.
[14] TRIFAN A, ANTUNES R, MATOS S, et al. Understanding depression from psycholinguistic patterns in social media texts[C]//Advances in Information Retrieval. Cham: Springer, 2020: 402-409.
[15] ZOGAN H, RAZZAK I, WANG X Z, et al. Explainable depression detection with multi-aspect features using a hybrid deep learning model on social media[J]. World Wide Web, 2022, 25(1): 281-304.
[16] BELINKOV Y, BISK Y. Synthetic and natural noise both break neural machine translation[J]. arXiv:1711.02173, 2017.
[17] ZHANG X, ZHAO J, LECUN Y. Character-level convolutional networks for text classification[C]//Advances in Neural Information Processing Systems, 2015.
[18] WU X, LV S W, ZANG L J, et al. Conditional BERT contextual augmentation[C]//Proceedings of the 19th International Conference on Computational Science. Cham: Springer, 2019: 84-95.
[19] WEI J, ZOU K. EDA: easy data augmentation techniques for boosting performance on text classification tasks[J]. arXiv:1901.11196, 2019.
[20] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Advances in Neural Information Processing Systems, 2020: 1877-1901.
[21] DAI H, LIU Z, LIAO W, et al. AugGPT: leveraging ChatGPT for text data augmentation [J]. arXiv:2302.13007, 2023.
[22] PENNEBAKER J W, MEHL M R, NIEDERHOFFER K G. Psychological aspects of natural language use: our words, our selves[J]. Annual Review of Psychology, 2003, 54: 547-577.
[23] STIRMAN S W, PENNEBAKER J W. Word use in the poetry of suicidal and nonsuicidal poets[J]. Psychosomatic Medicine, 2001, 63(4): 517-522.
[24] PO?WIATA R, PERE?KIEWICZ M. OPI@LT-EDI-ACL2022: detecting signs of depression from social media text using RoBERTa pre-trained language models[C]//Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion. Stroudsburg: ACL, 2022: 276-282.
[25] JIANG B, ZHANG Z Y, LIN D D, et al. Semi-supervised learning with graph learning-convolutional networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 11305-11312.
[26] SHEN Y, TAN S, SORDONI A, et al. Ordered neurons: integrating tree structures into recurrent neural networks[J]. arXiv:1810.09536, 2018.
[27] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
[28] GROSSBERG S. Recurrent neural networks[J]. Scholarpedia, 2013, 8(2): 1888.
[29] LAN Z, CHEN M, GOODMAN S, et al. ALBERT: a lite BERT for self-supervised learning of language representations[J]. arXiv:1909.11942, 2019.
[30] CHEN Y. Convolutional neural network for sentence classification[D]. Waterloo: University of Waterloo, 2015.
[31] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
[32] LECUN Y, BENGIO Y. Convolutional networks for images, speech, and time series[M]//The handbook of brain theory and neural networks. Cambridge: MIT Press, 1995.
[33] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018.
[34] JI S, ZHANG T, ANSARI L, et al. MentalBERT: publicly available pretrained language models for mental healthcare[J]. arXiv:2110.15621, 2021. |