[1] WRIGHT C S. Bitcoin: a peer-to-peer electronic cash system[J]. SSRN Electronic Journal, 2008: 236214.
[2] PIERRO D M. What is the blockchain?[J]. Computing in Science & Engineering, 2017, 19(5): 92-95.
[3] BUTERIN V. A next generation smart contract & decentralized application platform[EB/OL]. (2013-04-06)[2024-04-16]. https://ethereum.org/zh/whitepaper/.
[4] YAKOVENKO A. Solana: a new architecture for a high performance blockchain[EB/OL]. (2021-12-06)[2024-04-16]. https://solana.com/solana-whitepaper.pdf.
[5] FALKON, S. The story of the DAO—its history and consequences[EB/OL]. (2017-12-24)[2024-04-16]. https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee.
[6] 张健, 张超, 玄跻峰, 等. 程序分析研究进展[J]. 软件学报, 2019, 30(1): 80-109.
ZHANG J, ZHANG C, XUAN J F, et al. Recent progress in program analysis[J]. Journal of Software, 2019, 30(1): 80-109.
[7] YOU J, XIA S, LI J Q. A survey on formal methods using in software development[C]//Proceedings of the IET International Conference on Information Science and Control Engineering Institution of Engineering and Technology, 2012: 1-40.
[8] 梅宏, 王千祥, 张路, 等. 软件分析技术进展[J]. 计算机学报, 2009, 32(9): 1697-1710.
MEI H, WANG Q X, ZHANG L, et al. Software analysis: a road map[J]. Chinese Journal of Computers, 2009, 32(9): 1697-1710.
[9] LU L, CHU D H, OLICKEL H, et al. Making smart contracts smarter[C]//Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 254-269.
[10] TIKHOMIROV S, VOSKRESENSKAYA E, IVANITSKIY I, et al. SmartCheck: static analysis of ethereum smart contracts[C]//Proceedings of the 1st International Workshop on Emerging Trends in Software Engineering for Blockchain. New York: ACM, 2018: 9-16.
[11] FEIST J, GRIECO G, GROCE A. Slither: a static analysis framework for smart contracts[C]//Proceedings of the IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain. Piscataway: IEEE, 2019: 8-15.
[12] LIU H, LIU C, ZHAO W Q, et al. S-Gram: towards semantic-aware security auditing for Ethereum smart contracts[C]//Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. New York: ACM, 2018: 814-819.
[13] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[14] SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681.
[15] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017: 6000-6010.
[16] HUANG J J, HAN S M, YOU W, et al. Hunting vulnerable smart contracts via graph embedding based bytecode matching[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2144-2156.
[17] DANNEN C. Introducing Ethereum and solidity[M]. CA: Apress, 2017.
[18] CHEN D, FENG L, FAN Y Q, et al. Smart contract vulnerability detection based on semantic graph and residual graph convolutional networks with edge attention[J]. Journal of Systems and Software, 2023, 202: 111705.
[19] FENG Z, GUO D, TANG D, et al. CodeBERT: a pre-trained model for programming and natural languages[J]. arXiv: 2002.08155, 2020.
[20] ANGELO D M, SALZER G. Consolidation of ground truth sets for weakness detection in smart contracts[C]//Proceedings of the International Conference on Financial Cryptography and Data Security. Cham: Springer Nature Switzerland, 2024: 439-455.
[21] DURIEUX T, FERREIRA J F, ABREU R, et al. Empirical review of automated analysis tools on 47,587 Ethereum smart contracts[C]//Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. New York: ACM, 2020: 530-541.
[22] YASHAVANT C S, KUMAR S, KARKARE A. ScrawlD: a dataset of real world Ethereum smart contracts labelled with vulnerabilities[J]. arXiv:2202.11409, 2022.
[23] HILDENBRANDT E, SAXENA M, RODRIGUES N, et al. KEVM: a complete formal semantics of the ethereum virtual machine[C]//Proceedings of the IEEE 31st Computer Security Foundations Symposium. Piscataway: IEEE, 2018: 204-217.
[24] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2013: 2-4.
[25] BOJANOWSKI P, GRAVE E, JOULIN A, et al. Enriching word vectors with subword information[J]. Transactions of the Association for Computational Linguistics, 2017, 5: 135-146.
[26] WANG W, SONG J J, XU G Q, et al. ContractWard: automated vulnerability detection models for Ethereum smart contracts[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(2): 1133-1144.
[27] WU H J, ZHANG Z, WANG S W, et al. Peculiar: smart contract vulnerability detection based on crucial data flow graph and pre-training techniques[C]//Proceedings of the IEEE 32nd International Symposium on Software Reliability Enginee-ring. Piscataway: IEEE, 2021: 378-389.
[28] LIU Z G, QIAN P, WANG X Y, et al. Combining graph neural networks with expert knowledge for smart contract vulnerability detection[J]. arXiv:2107.11598, 2021.
[29] SARZYNSKA-WAWER J, WAWER A, PAWLAK A, et al. Detecting formal thought disorder by deep contextualized word representations[J]. Psychiatry Research, 2021, 304: 114135.
[30] RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre-trai-ning[EB/OL]. (2018-11-15)[2024-04-16]. https://openai.com/index/language-unsupervised/.
[31] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language underst-anding[C]//Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019: 4171-4186.
[32] DASP. Decentralized application security project?top 10?of?2018[EB/OL]. (2018-01-01) [2024-04-16]. https://www.dasp.co.
[33] JORAN H. Tree sitter solidity[EB/OL]. (2020-01-01) [2024-04-16]. https://github.com/JoranHonig/tree-sitter-solidity.
[34] PARIKH A, T?CKSTR?M O, DAS D, et al. A decomposable attention model for natural language inference[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2016: 2249-2255.
[35] BA J L, KIROS J R, HINTON G E. Layer normalization[J]. arXiv:1607.06450, 2016.
[36] PyTorch. Tensors and dynamic neural networks in Python with strong GPU acceleration[EB/OL]. (2020-01-01) [2024-04-16]. https://pytorch.org. |