
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (9): 1-24.DOI: 10.3778/j.issn.1002-8331.2409-0433
李雯洁,李雷孝,刘东江,杜金泽,林浩
出版日期:2025-05-01
发布日期:2025-04-30
LI Wenjie, LI Leixiao, LIU Dongjiang, DU Jinze, LIN Hao
Online:2025-05-01
Published:2025-04-30
摘要: 基于智能合约的数据交易有效克服了传统交易中的中心化、单点故障以及交易不透明等问题,显著提升了交易效率。然而,贯穿交易全程的智能合约由于其核心地位也面临着许多潜在威胁。概述了数据交易流程及合约漏洞现有的检测方法,接着按照数据交易中数据拥有者、数据请求者以及数据交易平台三个实体的交互关系对合约的漏洞重新分类;依据工具的作用,将工具分为智能合约漏洞检测工具和智能合约漏洞修复工具并从语言支持、平台兼容以及工具性能三方面对工具进行了对比分析。最后,总结了目前数据交易中智能合约面临的问题并对未来的研究方向提出展望。
李雯洁, 李雷孝, 刘东江, 杜金泽, 林浩. 数据交易中智能合约漏洞检测研究综述[J]. 计算机工程与应用, 2025, 61(9): 1-24.
LI Wenjie, LI Leixiao, LIU Dongjiang, DU Jinze, LIN Hao. Research Review on Vulnerability Detection of Smart Contract in Data Transaction[J]. Computer Engineering and Applications, 2025, 61(9): 1-24.
| [1] HASS G, SIMON P, KASHEF R. Business applications for current developments in big data clustering: an overview[C]//Proceedings of the 2020 IEEE International Conference on Industrial Engineering and Engineering Management. Piscataway: IEEE, 2020: 195-199. [2] XIA L, BAGHAIE S, MOHAMMAD SAJADI S. The digital economy: challenges and opportunities in the New Era of technology and electronic communications[J]. Ain Shams Engineering Journal, 2024, 15(2): 173-181. [3] DIXIT A, ZARPELAO B B, SMITH-CREASEY M, et al. A privacy-aware authentication and usage-controlled access protocol for IIoT decentralized data marketplace[J]. Computers & Security, 2024, 146: 621-634. [4] 钱鹏, 刘振广, 何钦铭, 等. 智能合约安全漏洞检测技术研究综述[J]. 软件学报, 2022, 33(8): 3059-3085. QIAN P, LIU Z G, HE Q M, et al. Smart contract vulnerability detection technique: a survey[J]. Journal of Software, 2022, 33(8): 3059-3085. [5] 董伟良, 刘哲, 刘逵, 等. 智能合约漏洞检测技术综述[J]. 软件学报, 2024, 35(1): 38-62. DONG W L, LIU Z, LIU K, et al. Survey on vulnerability detection technology of smart contracts[J]. Journal of Software, 2024, 35(1): 38-62. [6] 涂良琼, 孙小兵, 张佳乐, 等. 智能合约漏洞检测工具研究综述[J]. 计算机科学, 2021, 48(11): 79-88. TU L Q, SUN X B, ZHANG J L, et al. Survey of vulnerability detection tools for smart contracts[J]. Computer Science, 2021, 48(11): 79-88. [7] SURUCU O, YEPREM U, WILKINSON C, et al. A survey on ethereum smart contract vulnerability detection using machine learning[C]//Proceedings of the Disruptive Technologies in Information Sciences VI, 2022: 110-121. [8] 崔展齐, 杨慧文, 陈翔, 等. 智能合约安全漏洞检测研究进展[J]. 软件学报, 2024, 35(5): 2235-2267. CUI Z Q, YANG H W, CHEN X, et al. Research progress of security vulnerability detection of smart contracts[J]. Journal of Software, 2024, 35(5): 2235-2267. [9] HE D J, DING K, CHAN S, et al. Unknown threats detection methods of smart contracts[J]. IEEE Internet of Things Journal, 2024, 11(3): 4430-4441. [10] 刘哲旭, 李雷孝, 刘东江, 等. 智能合约漏洞检测与修复研究综述[J]. 计算机科学与探索, 2025, 19(4): 854-876. LIU Z X, LI L X, LIU D J, et al. Review of smart contract vulnerability detection and repair research[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 854-876. [11] AN B Y, XIAO M J, LIU A, et al. Secure crowdsensed data trading based on blockchain[J]. IEEE Transactions on Mobile Computing, 2023, 22(3): 1763-1778. [12] LU Y, WANG J Y, LIU L X, et al. Get by how much you pay: a novel data pricing scheme for data trading[J]. Information Processing & Management, 2024, 61(6): 116-127. [13] GU B, HU W W, GONG S M, et al. CBDTF: a distributed and trustworthy data trading framework for mobile crowdsensing[J]. IEEE Transactions on Vehicular Technology, 2024, 73(3): 4207-4218. [14] LIAO Z, SONG S W, ZHU H, et al. Large-scale empirical study of inline assembly on 7.6 million ethereum smart contracts[J]. IEEE Transactions on Software Engineering, 2023, 49(2): 777-801. [15] CHATTERJEE K, GOHARSHADY A K, GOHARSHADY E K. The treewidth of smart contracts[C]//Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. New York: ACM, 2019: 400-408. [16] DEBRECZENI M, KLENIK A, KOCSIS I. Transaction conflict control in hyperledger fabric: a taxonomy, gaps, and design for conflict prevention[J]. IEEE Access, 2024, 12: 18987-19008. [17] OSEI S B, MA Z C, HUANG R B. Smart contract vulnerability detection using wide and deep neural network[J]. Science of Computer Programming, 2024, 238: 68-79. [18] WOODCOCK J, LARSEN P G, BICARREGUI J, et al. Formal methods[J]. ACM Computing Surveys, 2009, 41(4): 1-36. [19] DE BOER F S, BONSANGUE M M. On the nature of symbolic execution[C]//Proceedings of the 2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. Piscataway: IEEE, 2019: 4-5. [20] 王晓寅, 孙佳泽, 胡春阳, 等. EtherFuzz:用于TOD漏洞检测的突变模糊智能合约[J]. 无线通信与移动计算, 2022(1):1-8. WANG X Y, LIU J Z, HU C Y, et al.EtherFuzz:mutated fuzzy smart contracts for TOD vulnerability detection[J]. Wireless Communications and Mobile Computing, 2022(1):1-8. [21] SCHWARTZ E J, AVGERINOS T, BRUMLEY D. All you ever wanted to know about dynamic taint analysis and forward symbolic execution (but might have been afraid to ask)[C]//Proceedings of the 2010 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2010: 317-331. [22] FENG T, CUI Y Y. Particle swarm algorithm for smart contract vulnerability detection based on semantic web[J]. International Journal on Semantic Web and Information Systems, 2024, 20(1): 1-33. [23] LIU Z W, HU C Q, XIA H, et al. SPDTS: a differential privacy-based blockchain scheme for secure power data trading[J]. IEEE Transactions on Network and Service Management, 2022, 19(4): 5196-5207. [24] XING C P, CHEN Z R, CHEN L X, et al. A new scheme of vulnerability analysis in smart contract with machine learning[J]. Wireless Networks, 2024, 30(7): 6325-6334. [25] CAI J, HUANG H H, MA C, et al. A blockchain-based privacy protecting framework with multi-channel access control model for asset trading[J]. Peer-to-Peer Networking and Applications, 2024, 17(5): 2810-2829. [26] HUANG Y F, BIAN Y Y, LI R P, et al. Smart contract security: a software lifecycle perspective[J]. IEEE Access, 2019, 7: 150184-150202. [27] YANG X D, WANG W J, SHU B, et al. Multi-message multi-receiver signcryption scheme based on blockchain[J]. Mathematical Biosciences and Engineering, 2023, 20(10): 18146-18172. [28] ZHANG X H, LI X H, MIAO Y B, et al. A data trading scheme with efficient data usage control for industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2022, 18(7): 4456-4465. [29] HU D H, LI Y F, PAN L X, et al. A blockchain-based trading system for big data[J]. Computer Networks, 2021, 191: 641-654. [30] GHALEB A, RUBIN J, PATTABIRAMAN K. AChecker: statically detecting smart contract access control vulnerabilities[C]//Proceedings of the 2023 IEEE/ACM 45th International Conference on Software Engineering. Piscataway: IEEE, 2023: 945-956. [31] YANG X H, ZHANG K. A fair and trusted trading scheme for medical data based on smart contracts[J]. Computers, Materials & Continua, 2024, 78(2): 1843-1859. [32] PISE R, PATIL S. A deep dive into blockchain-based smart contract-specific security vulnerabilities[C]//Proceedings of the 2022 IEEE International Conference on Blockchain and Distributed Systems Security. Piscataway: IEEE, 2022: 1-6. [33] SHAH H, SHAH D, JADAV N K, et al. Deep learning-based malicious smart contract and intrusion detection system for IoT environment[J]. Mathematics, 2023, 11(2): 418. [34] ZHOU X C, WANG Q Q, LIU Y F, et al. Are the smart contracts on Q&A site reliable?[J]. Software: Practice and Experience, 2025, 55(1): 29-48. [35] BAJOUDAH S, MISSIER P. Latency of trading transactions in brokered IoT data marketplace in ethereum[C]//Proceedings of the 2021 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Internet of People and Smart City Innovation. Piscataway: IEEE, 2021: 254-263. [36] KHAN Z A, SIAMI NAMIN A. Involuntary transfer: a vulnerability pattern in smart contracts[J]. IEEE Access, 2024, 12: 62459-62479. [37] DENG J, XING X F, DENG G Q, et al. A data consistency insurance method for smart contract[J]. Computers, Materials & Continua, 2023, 76(3): 3783-3795. [38] DAI W Q, DAI C K, CHOO K R, et al. SDTE: a secure blockchain-based data trading ecosystem[J]. IEEE Transactions on Information Forensics and Security, 2019, 15: 725-737. [39] WU Z N, ZHENG H, ZHANG L, et al. Privacy-friendly blockchain based data trading and tracking[C]//Proceedings of the 2019 5th International Conference on Big Data Computing and Communications. Piscataway: IEEE, 2019: 240-244. [40] ATZEI N, BARTOLETTI M, CIMOLI T. A survey of attacks on ethereum smart contracts (SoK)[C]//Proceedings of the 6th International Conference on Principles of Security and Trust, Held as Part of the European Joint Conferences on Theory and Practice of Software. Cham: Springer, 2017: 164-186. [41] LI J G, LU G H, GAO Y L, et al. A smart contract vulnerability detection method based on multimodal feature fusion and deep learning[J]. Mathematics, 2023, 11(23): 4823-4846. [42] CHEN J C, XIA X, LO D, et al. DefectChecker: automated smart contract defect detection by analyzing EVM bytecode[J]. IEEE Transactions on Software Engineering, 2022, 48(7): 2189-2207. [43] TIKHOMIROV S, VOSKRESENSKAYA E, IVANITSKIY I, et al. SmartCheck: static analysis of ethereum smart contracts[C]//Proceedings of the 2018 IEEE/ACM 1st International Workshop on Emerging Trends in Software Engineering for Blockchain. Piscataway: IEEE, 2018: 9-16. [44] ZHANG P, XIAO F, LUO X. Soliditycheck: quickly detecting smart contract problems through regular expressions[J]. arXiv:1911.09425, 2019. [45] WANG A, ZHU G J, LI J. Collaborative supervision of dangerous goods supply chain: a blockchain-based conceptual platform[J]. Computers & Industrial Engineering, 2025, 200: 110818. [46] 付梦琳, 吴礼发, 洪征, 等. 智能合约安全漏洞挖掘技术研究[J].计算机应用, 2019, 39(7): 1959-1966. FU M L, WU L F, HONG Z, et al. Research on vulnerability mining technique for smart contracts[J]. Journal of Computer Applications, 2019, 39(7): 1959-1966. [47] HE D J, WU R, LI X J, et al. Detection of vulnerabilities of blockchain smart contracts[J]. IEEE Internet of Things Journal, 2023, 10(14): 12178-12185. [48] WANG B W, LI B, YUAN Y, et al. CPDT: a copyright-preserving data trading scheme based on smart contracts and perceptual hashing[C]//Proceedings of the 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications. Piscataway: IEEE, 2022: 968-975. [49] JIANG B, LIU Y, CHAN W K. ContractFuzzer: fuzzing smart contracts for vulnerability detection[C]//Proceedings of the 2018 33rd IEEE/ACM International Conference on Automated Software Engineering. Piscataway: IEEE, 2018: 259-269. [50] LIU Y P, XU J, CUI B J. Smart contract vulnerability detection based onSymbolic execution technology[C]//Proceedings of the 18th Annual Conference on China Cyber Security (CNCERT). Singapore: Springer Nature Singapore, 2022: 193-207. [51] YANG S, CHEN J C, HUANG M Y, et al. Uncover the premeditated attacks: detecting exploitable reentrancy vulnerabilities by identifying attacker contracts[C]//Proceedings of the 2024 IEEE/ACM 46th International Conference on Software Engineering. Piscataway: IEEE, 2024: 1573-1584. [52] LIU C, LIU H, CAO Z, et al. ReGuard: finding reentrancy bugs in smart contracts[C]//Proceedings of the 2018 IEEE/ACM 40th International Conference on Software Engineering: Companion. Piscataway: IEEE, 2018: 65-68. [53] LI J J, LI J Q, WANG X, et al. Multi-blockchain based data trading markets with novel pricing mechanisms[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(12): 2222-2232. [54] LIU Z M, HUANG B N, LI Y S, et al. Pricing game and blockchain for electricity data trading in low-carbon smart energy systems[J]. IEEE Transactions on Industrial Informatics, 2024, 20(4): 6446-6456. [55] ZHENG P L, XU Q Q, ZHENG Z B, et al. Meepo: multiple execution environments per organization in sharded consortium blockchain[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(12): 3562-3574. [56] HUANG Y, WU X Y, WANG Q Q, et al. The sword of Damocles: upgradeable smart contract in ethereum[C]//Proceedings of the 32nd IEEE/ACM International Conference on Program Comprehension. New York: ACM, 2024: 333-345. [57] ZHANG Y Q, HE J S, XU J. Detecting falsified timestamps in evidence graph via attack graph[C]//Proceedings of the 2015 8th International Symposium on Computational Intelligence and Design. Piscataway: IEEE, 2015: 369-374. [58] MERLEC M M, IN H P. DataMesh+: a blockchain-powered peer-to-peer data exchange model for self-sovereign data marketplaces[J]. Sensors, 2024, 24(6): 1896. [59] 孙浩, 曾庆凯. 整数漏洞研究: 安全模型、检测方法和实例[J]. 软件学报, 2015, 26(2): 413-426. SUN H, ZENG Q K. Research on integer-based vulnerabilities: security model, detecting methods and RealWorld cases[J]. Journal of Software, 2015, 26(2): 413-426. [60] KRUPP J, ROSSOW C. teEther: gnawing at ethereum to automatically exploit smart contracts[C]//Proceedings of the 27th USENIX Security Symposium. Berkeley: Usenix Assoc, 2018: 1317-1333. [61] GRECH N, KONG M, JURISEVIC A, et al. MadMax: analyzing the out-of-Gas world of smart contracts[J]. Communications of the ACM, 2020, 63(10): 87-95. [62] HUA C J, WU S C, ZHANG Y, et al. A blockchain-based framework for rural property rights transactions[J]. Electronics, 2023, 12(20): 62-97. [63] 林诗意, 张磊, 刘德胜. 基于区块链智能合约的应用研究综述[J]. 计算机应用研究, 2021, 38(9): 2570-2581. LIN S Y, ZHANG L, LIU D S. Survey of application research based on blockchain-smart-contract[J]. Application Research of Computers, 2021, 38(9): 2570-2581. [64] 王戟, 詹乃军, 冯新宇, 等. 形式化方法概貌[J]. 软件学报, 2019, 30(1): 33-61. WANG J, ZHAN N J, FENG X Y, et al. Overview of formal methods[J]. Journal of Software, 2019, 30(1): 33-61. [65] ZHANG W Q, ZHANG Z, SHI Q K, et al. Nyx: detecting exploitable front-running vulnerabilities in smart contracts[C]//Proceedings of the 2024 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2024: 2198-2216. [66] ZHONG Z J, ZHENG Z B, DAI H N, et al. PrettySmart: detecting permission re-delegation vulnerability for token behaviors in smart contracts[C]//Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. New York: ACM, 2024. [67] CHEN H X, LU L, MASSEY B, et al. Verifying declarative smart contracts[C]//Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. New York: ACM, 2024. [68] HOLLER S, BIEWER S, SCHNEIDEWIND C. HoRStify: sound security analysis of smart contracts[C]//Proceedings of the 2023 IEEE 36th Computer Security Foundations Symposium. Piscataway: IEEE, 2023: 245-260. [69] 李红辉, 齐佳, 刘峰, 等. 模糊测试技术研究[J]. 中国科学: 信息科学, 2014, 44(10): 1305-1322. LI H H, QI J, LIU F, et al. The research progress of fuzz testing technology[J]. Scientia Sinica (Informationis), 2014, 44(10): 1305-1322. [70] CHOI J, KIM D, KIM S, et al. SMARTIAN: enhancing smart contract fuzzing with static and dynamic data-flow analyses[C]//Proceedings of the 2021 36th IEEE/ACM International Conference on Automated Software Engineering. Piscataway: IEEE, 2021: 227-239. [71] YE M X, LIN X W, NAN Y H, et al. Midas: mining profitable exploits in on-chain smart contracts via feedback-driven fuzzing and differential analysis[C]//Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis. New York: ACM, 2024: 794-805. [72] SMOLKA S, GIESEN J R, WINKLER P, et al. Fuzz on the beach: fuzzing solana smart contracts[C]//Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2023: 1197-1211. [73] CHEN D H, LIN J X, ZHANG S H, et al. Hypeleger fabric smart contract vulnerability detection technology: an overview[C]//Proceedings of the 2024 IEEE 11th International Conference on Cyber Security and Cloud Computing. Piscataway: IEEE, 2024: 84-89. [74] SONG S W, CHEN J C, CHEN T, et al. Empirical study of move smart contract security: introducing MoveScan for enhanced analysis[C]//Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis, 2024: 1682-1694. [75] FEIST J, GRIECO G, GROCE A. Slither: a static analysis framework for smart contracts[C]//Proceedings of the 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain. Piscataway: IEEE, 2019: 8-15. [76] BRENT L, JURISEVIC A, KONG M, et al. Vandal: a scalable security analysis framework for smart contracts[J]. arXiv:1809.03981, 2018. [77] GRECH N, KONG M, JURISEVIC A, et al. MadMax: surviving out-of-Gas conditions in Ethereum smart contracts[J]. Proceedings of the ACM on Programming Languages, 2018, 2: 1-27. [78] TIKHOMIROV S, VOSKRESENSKAYA E, IVANITSKIY I, et al. SmartCheck: static analysis of ethereum smart contracts[C]//Proceedings of the 2018 IEEE/ACM 1st International Workshop on Emerging Trends in Software Engineering for Blockchain. Piscataway: IEEE, 2018: 9-16. [79] 张健, 张超, 玄跻峰, 等. 程序分析研究进展[J]. 软件学报, 2019, 30(1): 80-109. ZHANG J, ZHANG C, XUAN J F, et al. Recent progress in program analysis[J]. Journal of Software, 2019, 30(1): 80-109. [80] WANG Z X, CHEN J C, WANG Y L, et al. Efficiently detecting reentrancy vulnerabilities in complex smart contracts[J]. Proceedings of the ACM on Software Engineering, 2024, 1: 161-181. [81] YANG S, CHEN J C, ZHENG Z B. Definition and detection of defects in NFT smart contracts[C]//Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis. New York: ACM, 2023: 373-384. [82] WANG X M, HE J H, XIE Z J, et al. ContractGuard: defend ethereum smart contracts with embedded intrusion detection[J]. IEEE Transactions on Services Computing, 2020, 13(2): 314-328. [83] LUO Y L, WAN J W, SHE S Q. Software security vulnerability mining based on deep learning[M]//Application of intelligent systems in multi-modal information analytics. Cham: Springer International Publishing, 2022: 536-543. [84] LUO F, LUO R J, CHEN T, et al. SCVHunter: smart contract vulnerability detection based on heterogeneous graph attention network[C]//Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. New York: ACM, 2024. [85] ZHUANG Y, LIU Z G, QIAN P, et al. Smart contract vulnerability detection using graph neural network[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence, 2021: 3283-3290. [86] SUN Y Q, WU D Y, XUE Y, et al. GPTScan: detecting logic vulnerabilities in smart contracts by combining GPT with program analysis[C]//Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. New York: ACM, 2024. [87] TANN W J, HAN X J, GUPTA S S, et al. Towards safer smart contracts: a sequence learning approach to detecting security threats[J]. arXiv:1811.06632, 2018. [88] WANG W, SONG J J, XU G Q, et al. ContractWard: automated vulnerability detection models for ethereum smart contracts[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(2): 1133-1144. [89] ABDELAZIZ T, HOBOR A, ASSOCIATION U. Smart lear- ning to find dumb contracts[C]//Proceedings of the 32nd USENIX Security Symposium. Berkeley: Usenix Assoc, 2023: 1775-1792. [90] BABEL K, JAVAHERIPI M, JI Y, et al. Lanturn: measuring economic security of smart contracts through adaptive learning[C]//Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2023: 1212-1226. [91] PAN Y, XU Z C, LI L T, et al. Automated generation of security-centric descriptions for smart contract bytecode[C]//Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis. New York: ACM, 2023: 1244-1256. [92] MO Y F, CHEN J C, WANG Y L, et al. Toward automated detecting unanticipated price feed in smart contract[C]//Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis. New York: ACM, 2023: 1257-1268. [93] YE M X, NAN Y H, ZHENG Z B, et al. Detecting state inconsistency bugs in DApps via on-chain transaction replay and fuzzing[C]//Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis. New York: ACM, 2023: 298-309. [94] LIAO Z Q, NAN Y H, LIANG H L, et al. SmartAXe: detecting cross-chain vulnerabilities in bridge smart contracts via fine-grained static analysis[J]. Proceedings of the ACM on Software Engineering, 2024, 1: 249-270. [95] PORKODI S, KESAVARAJA D. Escalating gas cost optimization in smart contract[J]. Wireless Personal Communications, 2024, 136(1): 35-59. [96] MUELLER B. A framework for bug hunting on the ethereum blockchain[J]. ConsenSys/Mythril, 2017: 664-676. [97] LIU Y Q, SONG W. FunRedisp: reordering function dispatch in smart contract to reduce invocation gas fees[C]//Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis. New York: ACM, 2024: 516-527. [98] ZHENG P L, SU B W, LUO X P, et al. LENT-SSE: leveraging executed and near transactions for speculative symbolic execution of smart contracts[C]//Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis. New York: ACM, 2024: 566-577. [99] GUO H Y, CHEN Y Y, CHEN X P, et al. Smart contract code repair recommendation based on reinforcement learning and multi-metric optimization[J]. ACM Transactions on Software Engineering and Methodology, 2024, 33(4): 1-31. [100] SONG Z M, YAN E H, SONG J R, et al. A blockchain-based digital identity system with privacy, controllability, and auditability[J]. Arabian Journal for Science and Engineering, 2024(1): 1-25. [101] TIAN W S, ZHANG L, CHEN S X, et al. Poster: a privacy-preserving smart contract vulnerability detection framework for permissioned blockchain[C]//Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2023: 3630-3632. |
| [1] | 江姝晨, 牛保宁, 高彦. 基于混合语义的切片级智能合约重入漏洞检测[J]. 计算机工程与应用, 2025, 61(1): 321-329. |
| [2] | 师自通, 师智斌, 刘冬明, 雷海卫, 龚晓元. 多头注意力机制的图同构网络智能合约源码漏洞检测[J]. 计算机工程与应用, 2024, 60(7): 258-265. |
| [3] | 王嘉诚, 蒋佳佳, 赵佳豪, 张玉书, 王良民. 基于模糊测试的智能合约正确性检测[J]. 计算机工程与应用, 2024, 60(5): 307-320. |
| [4] | 吴皓, 周世龙, 史东辉, 李强. 符号执行技术及应用研究综述[J]. 计算机工程与应用, 2023, 59(8): 56-72. |
| [5] | 张俊, 李山山, 李磊, 王浩宇. 基于残差门控图卷积网络的源代码漏洞检测[J]. 计算机工程与应用, 2023, 59(22): 293-299. |
| [6] | 许健, 陈平华, 熊建斌. 基于抽象内存模型的内存相关漏洞检测方法[J]. 计算机工程与应用, 2022, 58(8): 96-108. |
| [7] | 陈仲武, 凌捷. 基于以太坊和动态定价的数据交易模式研究[J]. 计算机工程与应用, 2022, 58(21): 119-130. |
| [8] | 代培武,潘祖烈,施凡. 面向漏洞类型的Crash分类研究[J]. 计算机工程与应用, 2020, 56(13): 124-130. |
| [9] | 张婉莹,曹晓梅. 基于污点分析的白盒模糊测试方案[J]. 计算机工程与应用, 2019, 55(18): 236-240. |
| [10] | 李元诚1,崔亚奇1,吕俊峰2,来风刚2,张 攀2. 开源软件漏洞检测的混合深度学习方法[J]. 计算机工程与应用, 2019, 55(11): 52-59. |
| [11] | 林宏阳,彭建山,赵世斌,朱俊虎,许 航. JavaScript引擎漏洞检测方法综述[J]. 计算机工程与应用, 2019, 55(11): 16-24. |
| [12] | 赵世斌,周天阳,朱俊虎,王清贤. 竞态漏洞检测方法综述[J]. 计算机工程与应用, 2018, 54(3): 1-10. |
| [13] | 夏志坚,彭国军,胡鸿富. 基于权限验证图的Web应用访问控制漏洞检测[J]. 计算机工程与应用, 2018, 54(12): 63-68. |
| [14] | 强小辉,陈 波,陈国凯. OpenSSL HeartBleed漏洞分析及检测技术研究[J]. 计算机工程与应用, 2016, 52(9): 88-95. |
| [15] | 王春雷1,2,刘 强2,赵 刚1,2,戴一奇1. 可执行程序缺陷函数的静态检测方法[J]. 计算机工程与应用, 2009, 45(26): 81-84. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||