[1] KUANG H L, ZHANG X S, LI Y J, et al. Nighttime vehicle detection based on bio?inspired image enhancement and weighted score-level feature fusion[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(4): 927-936.
[2] DING Y H, FAN H H, XU M L, et al. Adaptive exploration for unsupervised person re-identification[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2020, 16(1): 1-19.
[3] AINETTER S, FRAUNDORFER F. End-to-end trainable deep neural network for robotic grasp detection and semantic segmentation from RGB[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2021: 13452-13458.
[4] ABDULLAH-AL-WADUD M, KABIR M H, DEWAN M A A, et al. A dynamic histogram equalization for image contrast enhancement[J]. IEEE Transactions on Consumer Electronics, 2007, 53(2): 593-600.
[5] YANG J, XU Y, YUE H, et al. Low‐light image enhancement based on Retinex decomposition and adaptive gamma correction[J]. IET Image Processing, 2021, 15(5): 1189-1202.
[6] PARK S, YU S, MOON B, et al. Low-light image enhancement using variational optimization-based retinex model[J]. IEEE Transactions on Consumer Electronics, 2017, 63(2): 178-184.
[7] LI Y Z, NIU Y Z, XU R, et al. Zero-referenced low-light image enhancement with adaptive filter network[J]. Engineering Applications of Artificial Intelligence, 2023, 124: 106611.
[8] LORE K G, AKINTAYO A, SARKAR S. LLNet: a deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2017, 61: 650-662.
[9] WEI C, WANG W J, YANG W H, et al. Deep Retinex decomposition for low-light enhancement[J]. arXiv:1808.04560, 2018.
[10] JIANG Y F, GONG X Y, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349.
[11] ZHANG Y H, ZHANG J W, GUO X J. Kindling the darkness: a practical low-light image enhancer[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 1632-1640.
[12] ZHANG Y H, GUO X J, MA J Y, et al. Beyond brightening low-light images[J]. International Journal of Computer Vision, 2021, 129(4): 1013-1037.
[13] 彭大鑫, 甄彤, 李智慧. 低光照图像增强研究方法综述[J]. 计算机工程与应用, 2023, 59(18): 14-27.
PENG D X, ZHEN T, LI Z H. Survey of research methods for low light image enhancement[J]. Computer Engineering and Applications, 2023, 59(18): 14-27.
[14] GUO C L, LI C Y, GUO J C, et al. Zero-reference deep curve estimation for low-light image enhancement[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1777-1786.
[15] LI C Y, GUO C L, LOY C C. Learning to enhance low-light image via zero-reference deep curve estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 4225-4238.
[16] LIU R S, MA L, ZHANG J A, et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10556-10565.
[17] CHENG F S, ZHANG J. Low-light image enhancement method based on illumination curve adjustment[J]. Journal of Physics: Conference Series, 2023, 2650(1): 012022.
[18] CAI J R, GU S H, ZHANG L, et al. Learning a deep single image contrast enhancer from multi-exposure images[J]. IEEE Transactions on Image Processing, 2018, 27(4): 2049-2062.
[19] FEKRI-ERSHAD S, TAJERIPOUR F. Impulse-noise resistant color-texture classification approach using hybrid color local binary patterns and Kullback-Leibler divergence[J]. The Computer Journal, 2017, 60(11): 1633-1648.
[20] MARTINEZ A, HERNANDEZ E, OLAGUE M, et al. Analytical-heuristic modeling and optimization for low-light image enhancement[J]. arXiv:2412.07659, 2024.
[21] LEE C, LEE C, LEE Y Y, et al. Power-constrained contrast enhancement for emissive displays based on histogram equalization[J]. IEEE Transactions on Image Processing, 2012, 21(1): 80-93.
[22] GUO X J, LI Y, LING H B. LIME: low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 982-993.
[23] LEE C, LEE C, KIM C S. Contrast enhancement based on layered difference representation[C]//Proceedings of the 2012 19th IEEE International Conference on Image Processing. Piscataway: IEEE, 2012: 965-968.
[24] LI C Y, GUO J C, PORIKLI F, et al. LightenNet: a convolutional neural network for weakly illuminated image enhancement[J]. Pattern Recognition Letters, 2018, 104: 15-22.
[25] CHEN Y H, ZHU G, WANG X Q, et al. FMR-Net: a fast multi-scale residual network for low-light image enhancement[J]. Multimedia Systems, 2024, 30(2): 73.
[26] MA L, MA T Y, LIU R S, et al. Toward fast, flexible, and robust low-light image enhancement[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5627-5636. |