计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (16): 257-264.DOI: 10.3778/j.issn.1002-8331.2406-0291

• 图形图像处理 • 上一篇    下一篇

改进零参考深度曲线估计的低光图像增强方法

时圆圆,陈纯毅,于海洋,胡小娟,辛原旭   

  1. 长春理工大学 计算机科学技术学院,长春 130012
  • 出版日期:2025-08-15 发布日期:2025-08-15

Low-Light Image Enhancement Method for Improving Zero-Reference Deep Curve Estimation

SHI Yuanyuan, CHEN Chunyi, YU Haiyang, HU Xiaojuan, XIN Yuanxu   

  1. School of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130012, China
  • Online:2025-08-15 Published:2025-08-15

摘要: 零参考深度曲线估计(zero-reference deep curve estimation,Zero-DCE)虽然整体调整了图像的亮度,但却忽略了区域曝光和噪声过大的问题。针对上述问题,提出了一种更有效的基于照明曲线估计的低光图像增强方法,解决了不同曝光程度下,增强后图像亮度不均匀、存在过度曝光区域的问题,改善了增强后图像噪声的问题。在原有的U-Net基础上引入上采样块和残差网络,利用上采样块将不同层次的特征图进行融合,使得网络能够保留更多的原始图像信息,然后通过残差连接确保特征在传递过程中不会丢失,以此来更大程度地保留原有特征。加入各向异性扩散,在减轻图像噪声的同时保留边缘和结构细节。最后在非参考损失中引入通道一致性损失,抑制过度曝光区域。在MEF数据集上进行了视觉比较实验,在DICM、LIME、LOL、MEF数据集上进行了定量和定性实验。实验结果表明,该方法的SSIM值和PSNR值均取得较好结果。

关键词: 图像增强, 零参考, 各向异性扩散, 低光, 通道一致性损失

Abstract: Zero-reference deep curve estimation (Zero-DCE) adjusts image brightness globally but neglects the problems of regional exposure and excessive noise. To address these problems, this paper proposes a more effective low-light image enhancement method based on illumination curve estimation, which resolves issues of uneven brightness and overexposed areas in enhanced images under varying exposure levels and improves noise reduction. The paper introduces up-sampling blocks and a residual network into the original U-Net, enabling the network to retain more original image information by fusing feature maps from different layers. Residual connections ensure that features are not lost during transmission, preserving the original characteristics. Additionally, anisotropic diffusion reduces image noise while preserving edges and structural details. Channel consistency loss is introduced in the non-reference loss to suppress overexposed areas. The paper conducts visual comparison experiments on the MEF dataset and quantitative and qualitative experiments on the DICM, LIME, LOL and MEF datasets. The experimental results demonstrate that the proposed method achieves superior SSIM and PSNR values.

Key words: image enhancement, zero-reference, anisotropic diffusion, low-light, channel consistency loss