计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (10): 238-246.DOI: 10.3778/j.issn.1002-8331.2401-0249

• 图形图像处理 • 上一篇    下一篇

基于多级特征融合的低光图像增强网络

牟琦,马悦悦,李洪安,李占利   

  1. 1.西安科技大学 计算机科学与技术学院,西安 710054
    2.西安科技大学 机械工程学院,西安 710054
  • 出版日期:2025-05-15 发布日期:2025-05-15

Low-Light Image Enhancement Network of Multi-Level Feature Fusion

MU Qi, MA Yueyue, LI Hong’an, LI Zhanli   

  1. 1.College of Computer Science and Technology, Xi’an University of Science and Technology, Xi’an 710054, China
    2.College of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
  • Online:2025-05-15 Published:2025-05-15

摘要: 近年来,将Retinex理论与CNN结合的低光图像增强方法已取得显著成效,其中KinD++方法在光照调节方面表现尤为突出。然而当处理光照极低或极不均匀图像时该方法仍有提升空间。针对KinD++方法处理光照极低或极不均匀图像时存在的细节模糊、伪影以及色彩失真问题,对分解网和恢复网进行改进,提出一种基于多级特征融合的低光图像增强网络。通过深、中、浅层特征的跨级融合实现了对反射分量更准确的估计;在恢复网中设计De_Block去噪块和Canny边缘增强块,在有效去噪的同时保持细节清晰;采用色彩损失进一步得到自然明亮的图像色彩。实验结果表明,该方法能在有效改善图像亮度的同时修复细节和色彩,避免伪影。相比原方法,在LOL数据集上,PSNR、SSIM以及NIQE分别提高了13%、12%和28%;在多个基准数据集,如LIME、VV、MEF、DICM和LLIV-Phone-imgT上,也展现出了优越的性能。

关键词: 低光图像增强, 非均匀光/极低光照, Retinex理论, 多级特征融合, Canny边缘增强

Abstract: In recent years, the integration of Retinex theory and CNN for low-light image enhancement has achieved sig nificant progress, the KinD++ method stands out particularly in illumination adjustment. However, this method still has shortcomings when dealing with images with uneven or extremely low illumination. In order to address the issues of detail blurring, artifacting, and color distortion, when the KinD++ processes images with uneven or extremely low illumination, this paper makes improvements on decomposition network and restoration network, proposes a low-light image enhancement network of multi-level feature fusion. Through cross-level fusion of deep, medium, and shallow features, a more accurate estimation of the reflection is achieved. In the restoration network, De_Block denoising block and Canny edge enhancement block are designed, which can keep the details clear while denoising effectively. A color loss function is used to achieve natural and bright image colors. The experimental results demonstrate that the proposed method can effectively improve image brightness while restoring details and colors, thereby avoiding artifacts. Compared to the original method, on the LOL dataset, PSNR, SSIM, and NIQE are improved by 13%, 12%, and 28% respectively. Additionally, superior performance is demonstrated on multiple benchmark datasets such as LIME, VV, MEF, DICM, and LLIV-Phone-imgT.

Key words: low-light image enhancement, uneven/extremely low illumination, Retinex theory, multi-level feature fusion, Canny edge enhancement