[1] 胡鹏程, 唐诗华, 张炎, 等. 决策中值滤波联合三维块匹配的遥感影像去噪[J]. 海洋测绘, 2023, 43(2): 60-64.
HU P C, TANG S H, ZHANG Y, et al. Remote sensing image denoising based on efficient decision median filtering and 3D block matching[J]. Hydrographic Surveying and Charting, 2023, 43(2): 60-64.
[2] 马妍, 古丽米拉·克孜尔别克. 图像语义分割方法在高分辨率遥感影像解译中的研究综述[J]. 计算机科学与探索, 2023, 17(7): 1526-1548.
MA Y, GULIMILA·KEZIERBIEKE. Research review of image semantic segmentation method in high-resolution remote sensing image interpretation[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1526-1548.
[3] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
[4] NAYAN A A, SAHA J, MOZUMDER A N, et al. Real time detection of small objects[J]. International Journal of Innovative Technology and Exploring Engineering, 2020, 9: 837.
[5] LIU Z M, GAO G Y, SUN L, et al. HRDNet: high-resolution detection network for small objects[C]//Proceedings of the 2021 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2021: 1-6.
[6] LIM J S, ASTRID M, YOON H J, et al. Small object detection using context and attention[C]//Proceedings of the 2021 International Conference on Artificial Intelligence in Information and Communication. Piscataway: IEEE, 2021: 181-186.
[7] SHEN W X, QIN P L, ZENG J C. An indoor crowd detection network framework based on feature aggregation module and hybrid attention selection module[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop. Piscataway: IEEE, 2019: 82-90.
[8] FU K, LI J, MA L, et al. Intrinsic relationship reasoning for small object detection[J]. arXiv:2009.00833, 2020.
[9] 张华卫, 张文飞, 蒋占军, 等. 引入上下文信息和Attention Gate的GUS-YOLO遥感目标检测算法[J]. 计算机科学与探索, 2024, 18(2): 453-464.
ZHANG H W, ZHANG W F, JIANG Z J, et al. GUS-YOLO remote sensing target detection algorithm introducing context information and attention gate[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 453-464.
[10] LUO W J, LI Y J, URTASUN R, et al. Understanding the effective receptive field in deep convolutional neural networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, 2016: 4905-4913.
[11] GAO S H, LI Z Y, HAN Q, et al. RF-next: efficient receptive field search for convolutional neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 2984-3002.
[12] LIU Y G, YU J Z, HAN Y H. Understanding the effective receptive field in semantic image segmentation[J]. Multimedia Tools and Applications, 2018, 77(17): 22159-22171.
[13] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[14] LUO Y H, CAO X, ZHANG J T, et al. CE-FPN: enhancing channel information for object detection[J]. Multimedia Tools and Applications, 2022, 81(21): 30685-30704.
[15] SHI W Z, CABALLERO J, HUSZáR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1874-1883.
[16] CAO Y, XU J R, LIN S, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop. Piscataway: IEEE, 2019: 1971-1980.
[17] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
[18] LIU S T, HUANG D, WANG Y H. Learning spatial fusion for single-shot object detection[J]. arXiv:1911.09516, 2019.
[19] GHIASI G, LIN T Y, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7029-7038.
[20] ZHANG Z N, ZHANG L, WANG Y, et al. Bidirectional parallel feature pyramid network for object detection[J]. IEEE Access, 2022, 10: 49422-49432.
[21] GUO C, FAN B, ZHANG Q, et al. AugFPN: improving multi-scale feature learning for object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12595-12604.
[22] QIAO S Y, CHEN L C, YUILLE A. DetectoRS: detecting objects with recursive feature pyramid and switchable atrous convolution[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10208-10219.
[23] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[24] WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7794-7803.
[25] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[26] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[27] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
[28] LI X, WANG W H, WU L J, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[C]//Advances in Neural Information Processing Systems 33, 2020: 21002-21012.
[29] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6154-6162.
[30] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2020: 213-229.
[31] HUANG J, CHEN Z X, JONATHAN WU Q M, et al. CATFPN: adaptive feature pyramid with scale-wise concatenation and self-attention[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(12): 8142-8152. |