[1] 王庆闪, 张军, 刘元盛, 等. 基于NDT与ICP结合的点云配准算法[J]. 计算机工程与应用, 2020, 56(7): 88-95.
WANG Q S, ZHANG J, LIU Y S, et al. Point cloud registration algorithm based on combination of NDT and ICP[J]. Computer Engineering and Applications, 2020, 56(7): 88-95.
[2] HE Y, LIANG B, YANG J, et al. An iterative closest points algorithm for registration of 3D laser scanner point clouds with geometric features[J]. Sensors (Basel), 2017, 17(8): 1862.
[3] WU Z Z, CHEN H C, DU S Y, et al. Correntropy based scale ICP algorithm for robust point set registration[J]. Pattern Recognition, 2019, 93: 14-24.
[4] DU S Y, ZHENG N N, YING S H, et al. Affine iterative closest point algorithm for point set registration[J]. Pattern Recognition Letters, 2010, 31(9): 791-799.
[5] FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.
[6] MELLADO N, AIGER D, MITRA N J. Super 4PCS fast global pointcloud registration via smart indexing[J]. Computer Graphics Forum, 2014, 33(5): 205-215.
[7] SHI X J, LIU T, HAN X. Improved iterative closest point(ICP) 3D point cloud registration algorithm based on point cloud filtering and adaptive fireworks for coarse registration[J]. International Journal of Remote Sensing, 2020, 41(8): 3197-3220.
[8] 杜沅昊, 耿秀丽, 徐诚智, 等. 基于改进灰狼算法和自适应分裂KD-Tree的点云配准方法[J]. 系统仿真学报, 2025, 37(2): 424-435.
DU Y H, GENG X L, XU C Z, et al. Point cloud registration method based on improved grey wolf algorithm and adaptive splitting KD-Tree [J]. Journal of System Simulation, 2025, 37(2): 424-435.
[9] 王婷, 李凯, 张洁, 等. 三维后期重建中基于果蝇优化的点云数据配准研究[J]. 南京理工大学学报, 2023, 47(5): 692-698.
WANG T, LI K, ZHANG J, et al. Research on point cloud data registration based on fruit fly optimization in 3d post reconstruction[J]. Journal of Nanjing University of Science and Technology, 2023, 47(5): 692-698.
[10] 范怡萍, 葛宝臻, 陈雷. 基于人工蜂群优化的异尺度点云配准算法[J]. 激光与光电子学进展, 2023, 60(12): 236-245.
FAN Y P, GE B Z, CHEN L. Registration algorithm for differently scaled point clouds based on artificial bee colony optimization[J]. Laser & Optoelectronics Progress, 2023, 60(12): 236-245.
[11] LIU H, WANG S L, ZHAO D H. Initial alignment for point cloud registration by improved differential evolution algorithm[J]. OPTIK, 2021, 243: 166856.
[12] 李书群, 陈钰, 杨雨婷, 等. 基于佳点集人工鱼群的点云配准算法[J]. 合肥工业大学学报(自然科学版), 2023, 46(9): 1203-1209.
LI S Q, CHEN Y, YANG Y T, et al. Point cloud registration method based on artificial fish swarm algorithm using good point set[J]. Journal of Hefei University of Technology (Natural Science), 2023, 46(9): 1203-1209.
[13] ZHAN X, CAI Y, LI H, et al. A point cloud registration algorithm based on normal vector and particle swarm optimization[J]. Measurement and Control, 2020, 53(3/4): 265-275.
[14] XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[15] 回立川, 张晓泽, 李欢欢. 改进麻雀算法优化支持向量机的接触电阻预测[J]. 电工电能新技术, 2023, 42(8): 60-68.
HUI L C, ZHANG X Z, LI H H. Improved sparrow algorithm for optimizing support vector machines for contact resistance prediction[J]. Advanced Technology of Electrical Engineering and Energy, 2023, 42(8): 60-68.
[16] 戈一航, 杨光永, 于元滐, 等. 基于改进麻雀搜索算法的移动机器人路径规划[J]. 传感器与微系统, 2023, 42(7): 132-135.
GE Y H, YANG G Y, YU Y J, et al. Mobile robot path planning based on improved SSA[J]. Transducer and Microsystem Technologies, 2023, 42(7): 132-135.
[17] ALTAY V E, ALATAS B. Bird swarm algorithms with chaotic mapping[J]. Artificial Intelligence Review, 2020, 53(2): 1373-1414.
[18] 欧阳城添, 周凯. 融合改进天牛须搜索的教与学优化算法[J]. 计算机工程与应用, 2022, 58(4): 91-99.
OUYANG C T, ZHOU K. Teaching-learning based optimization algorithm with improved beetle antennae search[J]. Computer Engineering and Applications, 2022, 58(4): 91-99.
[19] PHATAK S C, RAO S S. Logistic map: a possible random-number generator[J]. Physical Review E, 1995, 51(4): 3670-3678.
[20] SUN C, HE K, XU Q, et al. A novel conservative chaotic circuit with a cubic root[J]. International Journal of Bifurcation and Chaos, 2023, 33(15): 1-15.
[21] POWELL M. Continuity of the Lyapunov exponent for analytic multi-frequency quasiperiodic cocycles[J]. arXiv:2210. 09285, 2022.
[22] 苏莹莹, 王升旭. 自适应混合策略麻雀搜索算法[J]. 计算机工程与应用, 2023, 59(9): 75-85.
SU Y Y, WANG S X. Adaptive hybrid strategy sparrow search algorithm[J]. Computer Engineering and Applications, 2023, 59(9): 75-85.
[23] TENG Z J, LYU J L, GUO L W. An improved hybrid grey wolf optimization algorithm[J]. Soft Computing, 2019, 23(15): 6617-6631.
[24] LI W, YE X Q, HUANG Y, et al. Adaptive dimensional learning with a tolerance framework for the differential evolution algorithm[J]. Complex System Modeling and Simulation, 2022, 2(1): 59-77.
[25] HU G, DU B, LI H N, et al. Quadratic interpolation boosted black widow spider-inspired optimization algorithm with wavelet mutation[J]. Mathematics and Computers in Simulation, 2022, 200: 428-467.
[26] WANG X K, YANG F L, ZHANG H D, et al. Registration of airborne LiDAR bathymetry and multibeam echo sounder point clouds[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3076462.
[27] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the International Conference on Neural Networks, 1995: 1942-1948.
[28] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
[29] 顾嘉城, 龙英文, 吉明明, 等. 基于高斯云改进的混沌麻雀搜索算法与应用[J]. 光电子·激光, 2023, 34(10): 1047-1058.
GU J C, LONG Y W, JI M M, et al. Improved chaotic sparrow search algorithm and application based on Gaussian cloud[J]. Journal of Optoelectronics·Laser, 2023, 34(10): 1047-1058.
[30] 郑旸, 龙英文, 吉明明, 等. 融合螺旋黏菌算法的混沌麻雀搜索算法与应用[J]. 计算机工程与应用, 2023, 59(14): 124-133.
ZHENG Y, LONG Y W, JI M M, et al. Chaotic sparrow search algorithm and application based on spiral slime mould algorithm[J]. Computer Engineering and Applications, 2023, 59(14): 124-133.
[31] AL-BETAR M A, AWADALLAH M A, BRAIK M S, et al. Elk herd optimizer: a novel nature-inspired metaheuristic algorithm[J]. Artificial Intelligence Review, 2024, 57(3): 48. |