[1] ZOUEIN P P, KATTAN S. An improved construction approach using ant colony optimization for solving the dynamic facility layout problem[J]. Journal of the Operational Research Society, 2022, 73(7): 1517-1531.
[2] ALBERTO HERRáN, COLMENAR J M, DUARTE A. An efficient variable neighborhood search for the space-free multi-row facility layout problem[J]. European Journal of Operational Research, 2021, 295(3): 893-907.
[3] AZEVEDO M M, CRISPIM J A, SOUSA J D P. A dynamic multi-objective approach for the reconfigurable multi-facility layout problem[J]. Journal of Manufacturing Systems, 2017, 42: 140-152.
[4] GUAN J, LIN G, FENG H B, et al. A decomposition-based algorithm for the double row layout problem[J]. Applied Mathematical Modelling, 2020, 77: 963-979.
[5] BUKCHIN Y, TZUR M. A new MILP approach for the facility process-layout design problem with rectangular and L/T shape departments[J]. International Journal of Production Research, 2014, 52(24): 7339-7359.
[6] KOTHARI R, GHOSH D. Insertion based Lin-Kernighan heuristic for single row facility layout[J]. Computers & Operations Research, 2013, 40(1): 129-136.
[7] LIU S, ZHANG Z, GUAN C, et al. An improved fireworks algorithm for the constrained single-row facility layout problem[J]. International Journal of Production Research, 2021, 59(8): 2309-2327.
[8] WEI X, YUAN S, YE Y . Optimizing facility layout planning for reconfigurable manufacturing system based on chaos genetic algorithm[J]. Production & Manufacturing Research, 2019, 7(1): 109-124.
[9] BISWAS P P, SUGANTHAN P N, AMARATUNGA G A J. Decomposition based multi-objective evolutionary algorithm for windfarm layout optimization[J]. Renewable Energy, 2018, 115: 326-337.
[10] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
[11] AL-TASHI Q, RAIS M H, ABDULKADIR S J, et al. A review of grey wolf optimizer-based feature selection methods for classification[J]. Evolutionary Machine Learning Techniques: Algorithms and Applications, 2020: 273-286.
[12] MAKHADMEH S N, ALOMARI O A, MIRJALILI S, et al. Recent advances in multi-objective grey wolf optimizer, its versions and applications[J]. Neural Computing and Applications, 2022, 34(22): 19723-19749.
[13] 刘威, 郭直清, 姜丰, 等. 协同围攻策略改进的灰狼算法及其PID参数优化[J]. 计算机科学与探索, 2023, 17(3): 1339-1349.
LIU W, GUO Z Q, JIANG F, et al. Improved grey wolf optimizer based on cooperative attack strategy and its PID parameter optimization[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 1339-1349.
[14] 周广悦, 李克文, 刘文英, 等. 灰狼优化的混合参数多分类孪生支持向量机[J]. 计算机科学与探索, 2020, 14(4): 628-636.
ZHOU G Y, LI K W, LIU W Y, et al. Grey wolf optimizes mixed parameter multi-classification twin support vector[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(4): 628-636.
[15] KOMAKI G M, KAYVANFAR V. Grey wolf optimizer algorithm for the two-stage assembly flow shop scheduling problem with release time[J]. Journal of Computational Science, 2015, 8: 109-120.
[16] 王永琦, 江潇潇. 基于混合灰狼算法的机器人路径规划[J]. 计算机工程与科学, 2020, 42(7): 1294-1301.
WANG Y Q, JIANG X X. Robot path planning using a hybrid grey wolf optimization algorithm[J]. Computer Engineering & Science, 2020, 42(7): 1294-1301.
[17] SONG X, TANG L, ZHAO S, et al. Grey wolf optimizer for parameter estimation in surface waves[J]. Soil Dynamics and Earthquake Engineering, 2015, 75: 147-157.
[18] MONIZ N, MONTEIRO H. No free lunch in imbalanced learning[J]. Knowledge-Based Systems, 2021, 227: 107222-107230.
[19] 宋强. Beam-PSO优化算法在多行程车辆路径问题的应用[J]. 计算机工程与科学, 2019(10): 1882-1891.
SONG Q. Application of an optimized beam-PSO algorithm in multiple-trip vehicle routing problem[J]. Computer Engineering & Science, 2019(10): 1882-1891.
[20] LEE D, RAHMAN S. Robust design optimization under dependent random variables by a generalized polynomial chaos expansion[J]. Structural and Multidisciplinary Optimization, 2021, 63(5): 2425-2457.
[21] ABUALIGAH L. Group search optimizer: a nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications[J]. Neural Computing and Applications, 2021, 33(7): 2949-2972.
[22] SAXENA A, KUMAR R, DAS S. β-chaotic map enabled grey wolf optimizer[J]. Applied Soft Computing, 2019, 75: 84-105.
[23] GUPTA S, DEEP K. A memory-based grey wolf optimizer for global optimization tasks[J]. Applied Soft Computing, 2020, 93: 106367-106397.
[24] ARORA S, SINGH S. Butterfly optimization algorithm: a novel approach for global optimization[J]. Soft Computing, 2019, 23: 715-734.
[25] ZHAO W, WANG L, ZHANG Z. Atom search optimization and its application to solve a hydrogeologic parameter estimation problem[J]. Knowledge-Based Systems, 2019, 163: 283-304.
[26] 卢梦蝶, 鲁海燕, 侯新宇, 等. 融合柯西变异的鸟群与算术混合优化算法[J]. 计算机工程与应用, 2023, 59(14): 62-75.
LU M D, LU H Y, HOU X Y, et al. Hybrid algorithm of bird swarm algorithm and arithmetic optimization algorithm based on Cauchy mutation[J]. Computer Engineering and Applications, 2023, 59(14): 62-75.
[27] WU L, XIAO W, WANG J, et al. A new adaptive genetic algorithm and its application in the layout problem[J]. International Journal of Computational Intelligence Systems, 2015, 8(6): 1044-1052.
[28] NGUYEN P T. Construction site layout planning and safety management using fuzzy-based bee colony optimization model[J]. Neural Computing and Applications, 2021, 33: 5821-5842.
[29] ZHANG J, DAO S D, ZHANG W, et al. A new job priority rule for the NEH-based heuristic to minimize makespan in permutation flowshops[J]. Engineering Optimization, 2023, 55(8): 1296-1315. |