[1] DODDINGTON G, MITCHELL A, PRZYBOCKI M A, et al. The automatic content extraction (ACE) program-tasks, data, and evaluation[C]//Proceedings of the 2004 International Conference on Language Resources and Evaluation, 2004.
[2] 胡杭乐, 程春雷, 叶青, 等. 开放信息抽取研究综述[J]. 计算机工程与应用, 2023, 59(16): 31-49.
HU H L, CHENG C L, YE Q, et al. Survey of open information extraction research[J]. Computer Engineering and Applications, 2023, 59(16): 31-49.
[3] SOUZA COSTA T, GOTTSCHALK S, DEMIDOVA E, et al. Event-QA[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 3157-3164.
[4] BOSSELUT A, LE BRAS R, CHOI Y. Dynamic neuro-symbolic knowledge graph construction for zero-shot commonsense question answering[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(6): 4923-4931.
[5] CHEN Y B, XU L H, LIU K, et al. Event extraction via dynamic multi-pooling convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2015: 167-176.
[6] HU C, LI J Y, SU F F, et al. OneEE: a one-stage framework for fast overlapping and nested event extraction[C]//Proceedings of the 29th International Conference on Computational Linguistics, 2022: 1953-1964.
[7] LI J Y, FEI H, LIU J, et al. Unified named entity recognition as word-word relation classification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(10): 10965-10973.
[8] DEVLIN J, CHANG M W, LEE K, et al, BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 4171-4186.
[9] SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681.
[10] WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539.
[11] YU J T, BOHNET B, POESIO M. Named entity recognition as dependency parsing[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 6470-6476.
[12] SHA L, QIAN F, CHANG B B, et al. Jointly extracting event triggers and arguments by dependency-bridge RNN and tensor-based argument interaction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 5916-5923.
[13] QIU X P, SUN T X, XU Y G, et al. Pre-trained models for natural language processing: a survey[J]. Science China Technological Sciences, 2020, 63(10): 1872-1897.
[14] RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pretraining[EB/OL]. (2018) [2024-06-30]. https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford?Narasimhan/cd18800a0fe0b668a1cc19f2ec95b
5003d0a5035.
[15] PETERS M, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human LanguageTechnologies. Stroudsburg: ACL, 2018: 2227-2237.
[16] WADDEN D, WENNBERG U, LUAN Y, et al. Entity, relation, and event extraction with contextualized span representations[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 5784-5789.
[17] DU X Y, CARDIE C. Event extraction by answering (almost) natural questions[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 671-683.
[18] LU Y J, LIN H Y, XU J, et al. Text2Event: controllable sequence-to-structure generation for end-to-end event extraction[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 2795-2806.
[19] HAN R D, PENG T, YANG C H, et al. Is information extraction solved by ChatGPT? An analysis of performance, evaluation criteria, robustness and errors[J]. arXiv:2305. 14450, 2023.
[20] LIN Y, JI H, HUANG F, et al. A joint neural model for information extraction with global features[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 7999-8009.
[21] WANG S J, YU M, CHANG S Y, et al. Query and extract: refining event extraction as type-oriented binary decoding[C]//Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 169-182.
[22] ZHANG Z X, JI H. Abstract meaning representation guided graph encoding and decoding for joint information extraction[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 39-49.
[23] LI S, JI H, HAN J W. Document-level event argument extraction by conditional generation[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 894-908. |