计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (10): 111-119.DOI: 10.3778/j.issn.1002-8331.2402-0185

• 模式识别与人工智能 • 上一篇    下一篇

结合二维增强融合机制的事件论元抽取方法

王潞翔,陈艳平,黄辉,黄瑞章,秦永彬   

  1. 1.贵州大学 计算机科学与技术学院 文本计算与认知智能教育部工程研究中心,贵阳 550025
    2.贵州大学 公共大数据国家重点实验室,贵阳 550025
  • 出版日期:2025-05-15 发布日期:2025-05-15

Event Argument Extraction with Two-Dimensional Enhanced Fusion Mechanism

WANG Luxiang, CHEN Yanping, HUANG Hui, HUANG Ruizhang, QIN Yongbin   

  1. 1.Engineering Research Center of Ministry of Education for Text Computing and Cognitive Intelligence, School of Computer Science and Technology, Guizhou University, Guiyang 550025, China
    2.State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China
  • Online:2025-05-15 Published:2025-05-15

摘要: 针对现有的事件论元抽取研究中触发词和论元间缺少交互以及通道内部缺少交互的问题,提出结合二维增强融合机制的事件论元抽取模型(two-dimensional enhanced fusion mechanism for event argument extraction,W2-ARG)。在句子中的触发词两边插入标识符,引入事件类型信息的同时增强触发词和论元的交互,并单独编码触发词以突出其在句子中的语义信息。将论元抽取建模为二维化表示的标签预测,通过膨胀卷积捕获不同距离的单词的语义交互。使用通道注意力模块增强通道内部的交互,以强化通道内的信息传递。最后利用拉普拉斯算子来突出事件论元在语义空间中的位置特征,提升模型对事件论元的识别精度。模型在ACE05-EN、ERE-EN数据集上进行了实验,实验结果表明该方法的性能相较其他基于分类的事件论元抽取方法提升明显。

关键词: 事件论元抽取, 句子平面化表示, 通道注意力, 拉普拉斯算子, BERT

Abstract: Addressing the lack of interaction between trigger and arguments, and the lack of interaction within channels in existing studies of event argument extraction, this paper proposes a two-dimensional enhanced fusion mechanism for event argument extraction (W2-ARG) that incorporates a 2D enhanced fusion method. It inserts identifiers on both sides of a trigger word in a sentence, which encodes information about the event type. In the learning process, it is effective to enhance the interaction between trigger and argument, and encode the trigger separately to highlight its information in the sentence. The event argument extraction is implemented as a two-dimensional representation of label prediction. It has the advantage to capture semantic interactions of words at different distances through dilated convolution. Subsequently, a channel attention module is applied to enhance the interactions within the channel to strengthen the information transfer within the channel. Finally, the Laplace operator is utilized to highlight the positional features of event arguments in the semantic space to improve the performance. The proposed model is experimented on the ACE05-EN and ERE-EN datasets. Experimental results show clear performance improvement of the proposed model compared with other event argument extraction methods.

Key words: event argument extraction, sentence planarization representation, channel attention, Laplace operator, BERT