[1] 刘志明, 刘鲁. 基于机器学习的中文微博情感分类实证研究[J]. 计算机工程与应用, 2012, 48(1): 1-4.
LIU Z M, LIU L. Empirical study of sentiment classification for Chinese microblog based on machine learning[J]. Computer Engineering and Applications, 2012, 48(1): 1-4.
[2] 徐军, 丁宇新, 王晓龙. 使用机器学习方法进行新闻的情感自动分类[J]. 中文信息学报, 2007(6): 95-100.
XU J, DING Y X, WANG X L. Sentiment classification for Chinese news using machine learning methods[J]. Journal of Chinese Information Processing, 2007(6): 95-100.
[3] 欧阳纯萍, 阳小华, 雷龙艳, 等. 多策略中文微博细粒度情绪分析研究[J]. 北京大学学报(自然科学版), 2014, 50(1): 67-72.
OUYANG C P, YANG X H, LEI L Y, et al. Multi-strategy approach for fine-grained sentiment analysisof Chinese microblog[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(1): 67-72.
[4] 杨爽, 陈芬. 基于SVM多特征融合的微博情感多级分类研究[J]. 数据分析与知识发现, 2017, 1(2): 73-79.
YANG S, CHEN F. Analyzing sentiments of micro-blog posts based on support vector machine[J]. Data Analysis and Knowledge Discovery, 2017, 1(2): 73-79.
[5] 杨丽, 吴雨茜, 王俊丽, 等. 循环神经网络研究综述[J]. 计算机应用, 2018, 38(2): 1-6.
YANG L, WU Y X, WANG J L, et al. Research on recurrent neural network[J]. Journal of Computer Applications, 2018, 38(2): 1-6.
[6] 陈珂, 梁斌, 柯文德, 等. 基于多通道卷积神经网络的中文微博情感分析[J]. 计算机研究与发展, 2018, 55(5): 945-957.
CHEN K, LIANG B, KE W D, et al. Chinese micro-blog sentiment analysis based on multi-channels convolutional neural networks[J]. Journal of Computer Research and Development, 2018, 55(5): 945-957.
[7] 杨秀璋, 武帅, 张苗, 等. 基于TextCNN和Attention的微博舆情事件情感分析[J]. 信息技术与信息化, 2021(7): 41-46.
YANG X Z, WU S, ZHANG M, et al. Emotional analysis of microblog public opinion events based on TextCNN and Attention[J]. Information Technology and Informatization, 2021(7): 41-46.
[8] 李浩君, 吕韵, 汪旭辉, 等. 融入情感分析的多层交互深度推荐模型研究[J]. 数据分析与知识发现, 2023, 7(3): 43-57.
LI H J, LYU Y, WANG X H, et al. A deep recommendation model with multi-layer interaction and sentiment analysis[J]. Data Analysis and Knowledge Discovery, 2023, 7(3): 43-57.
[9] 李洋, 董红斌. 基于CNN和BiLSTM网络特征融合的文本情感分析[J]. 计算机应用, 2018, 38(11): 3075-3080.
LI Y, DONG H B. Text sentiment analysis based on feature fusion of convolution neural network and bidirectional long short-term memory network[J]. Journal of Computer Applications, 2018, 38 (11): 3075-3080.
[10] 王丽亚, 刘昌辉, 蔡敦波, 等. CNN-BiGRU网络中引入注意力机制的中文文本情感分析[J]. 计算机应用, 2019, 39(10): 2841-2846.
WANG L Y, LIU C H, CAI D B, et al. Chinese text sentiment analysis based on CNN-BiGRU network with attention mechanism[J]. Journal of Computer Applications, 2019, 39(10): 2841-2846.
[11] YAN C, LIU J, LIU W, et al. Sentiment analysis and topic mining using a novel deep attention-based parallel dual-channel model for online course reviews[J]. Cognitive Computation, 2023, 15(1): 304-322.
[12] 臧洁, 鲁锦涛, 王妍, 等. 融合双通道特征的中文短文本情感分类模型[J]. 计算机工程与应用, 2024, 60(21): 116-126.
ZANG J, LU J T, WAMG Y, et al. Chinese short text sentiment classification model integrating dual-channel features[J]. Computer Engineering and Applications, 2024, 60(21): 116-126.
[13] 陈俊涛, 刘力铭, 车月琴. 基于图卷积网络的中文短文本细粒度情感分析[J]. 电脑与电信, 2023, (3): 79-84.
CHEN J T, LIU L M, CHE Y Q. Sentiment analysis of fine-grained chinese short text based on graph convolution network[J]. Computer and Telecommunication, 2023, (3): 79-84.
[14] ZHANG Y, XU H, XU K. Chinese short text classification based on dependency syntax information[C]//Proceedings of the 5th International Conference on Compute and Data Analysis, 2021: 133-138.
[15] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018.
[16] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st Conference on Neural Information Processing Systems, 2017: 6000-6010.
[17] SHAW P, USZKOREIT J, VASWANI A. Self-attention with relative position representations[J]. arXiv:1803.02155, 2018.
[18] 霍帅, 庞春江. 基于Transformer和多通道卷积神经网络的情感分析研究[J]. 计算机科学, 2021, 48(1): 349-356.
HUO S, PANG C J. Research on sentiment analysis based on Transformer and multi-channel convolutional neural network[J]. Computer Science, 2021, 48 (1): 349-356.
[19] 王金政, 杨颖, 余本功. 基于多头协同注意力机制的客户投诉文本分类模型[J]. 数据分析与知识发现, 2023, 7(1): 128-137.
WANG J Z, YANG Y, YU B G. Classifying customer complaints based on multi-head co-attention mechanism[J]. Data Analysis and Knowledge Discovery, 2023, 7(1): 128-137.
[20] KIM Y. Convolutional neural networks for sentence classification[J]. arXiv:1408.5882, 2014.
[21] 申昌, 冀俊忠. 基于双通道卷积神经网络的文本情感分类算法[J]. 模式识别与人工智能, 2018, 31(2): 158-166.
SHEN C, JI J Z. Text sentiment classification algorithm based on double channel convolutional neural network[J]. Pattern Recognition and Artificial Intelligence, 2018, 31 (2): 158-166.
[22] 杨奎河, 刘智鹏. 基于BERT-BiLSTM的短文本情感分析[J]. 长江信息通信, 2020(6): 81-82.
YANG K H, LIU Z P. Short text sentiment analysis based on BERT-BiLSTM[J]. Changjiang Information and Communications, 2020(6): 81-82.
[23] 邵辉. 基于BERT-TextCNN的中文短文本情感分析[J]. 信息与电脑, 2022, 34(1): 77-80.
SHAO H. Sentiment analysis of Chinese short text based on BERT-TextCNN[J]. Information and Computer, 2022, 34(1): 77-80.
[24] 张浩然, 谢云熙, 张艳荣. 基于TextCNN的文本情感分类系统[J]. 哈尔滨商业大学学报(自然科学版), 2022, 38(3): 285-292.
ZHANG H R, XIE Y X, ZHANG Y R. Text sentiment classification system based on TextCNN[J]. Journal of Harbin University of Commerce (Natural Science Edition), 2022, 38(3): 285-292.
[25] 和志强, 杨建, 罗长玲. 基于BiLSTM神经网络的特征融合短文本分类算法[J]. 智能计算机与应用, 2019, 9(2): 21-27.
HE Z Q, YANG J, LUO C L. Combination characteristics based on BiLSTM for short text classification[J]. Intelligent Computer and Applications, 2019, 9(2): 21-27.
[26] 诸林云, 曲金帅, 范菁, 等. 基于BERT-BiLSTM-Attention的文本情感分析[J]. 云南民族大学学报(自然科学版), 2023, 32(4): 520-527.
ZHU L Y, QU J S, FAN J, et al. Text sentiment analysis based on BERT-BiLSTM-Attention [J]. Journal of Yunnan Minzu University(Natural Sciences Edition), 2023, 32(4): 520-527. |