[1] LIU S W, SUN Y H, JIANG X Y, et al. Comparison and analysis of multiple signal processing methods in steel wire rope defect detection by hall sensor[J]. Measurement, 2021, 171: 108768.
[2] KIKUCHI H, TSCHUNCKY R, SZIELASKO K. Challenges for detection of small defects of submillimeter size in steel using magnetic flux leakage method with higher sensitive magnetic field sensors[J]. Sensors and Actuators A: Physical, 2019, 300: 111642.
[3] EFTEKHARI H, TEHRANCHI M M. Miniaturized magneto-optical imaging sensor for crack and micro-crack detection[J]. Optik, 2020, 207: 163830.
[4] TOGO R, WATANABE H, OGAWA T, et al. Deep convolutional neural network-based anomaly detection for organ classification in gastric X-ray examination[J]. Computers in Biology and Medicine, 2020, 123: 103903.
[5] XU Y T, WU Z F, ZHANG H X, et al. Detection of prohibited and restricted object X-ray images based on Hi color space segmentation[J]. Journal of X-Ray Science and Technology, 2023, 31(5): 1093-1114.
[6] BENSAID N, BENLAMNOUAR M F, BADJI R, et al. Microstructural and mechanical characterization of HSLA X70 welded joints using eddy current testing (ECT)[J]. IOP Conference Series: Materials Science and Engineering, 2022, 1233(1): 012012.
[7] KYRKOU C. YOLOpeds: efficient real-time single-shot pedestrian detection for smart camera applications[J]. IET Computer Vision, 2020, 14(7): 417-425.
[8] CHIAN E, FANG W L, GOH Y M, et al. Computer vision approaches for detecting missing barricades[J]. Automation in Construction, 2021, 131: 103862.
[9] EL HAKEA A H, FAKHR M W. Recent computer vision applications for pavement distress and condition assessment[J]. Automation in Construction, 2023, 146: 104664.
[10] CAO Y N, ZHANG D L, WANG C, et al. A novel electromagnetic method for local defects inspection of wire rope[C]//Proceedings of the TENCON 2006-2006 IEEE Region 10 Conference. Piscataway: IEEE, 2006: 1-4.
[11] HUANG X Y, LIU Z L, ZHANG X Y, et al. Surface damage detection for steel wire ropes using deep learning and computer vision techniques[J]. Measurement, 2020, 161: 107843.
[12] YE H L, WANG Y, CAO F L. A novel meta-learning framework: multi-features adaptive aggregation method with information enhancer[J]. Neural Networks, 2021, 144: 755-765.
[13] ZHANG Y, ZUO X, ZHENG X X, et al. Improving metric-based few-shot learning with dynamically scaled softmax loss[J]. Image and Vision Computing, 2023, 140: 104860.
[14] WANG H, TIAN S Z, FU Y, et al. Feature augmentation based on information fusion rectification for few-shot image classification[J]. Scientific Reports, 2023, 13(1): 3607.
[15] SCHWARTZ E, LEONID K, JOSEPH S, et al. RepMet: representative-based metric learning for classification and one-shot object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.
[16] XIAO Z X, QI J H, XUE W, et al. Few-shot object detection with self-adaptive attention network for remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4854-4865.
[17] CHEN H, WANG Y L, WANG G Y, et al. LSTD: a low-shot transfer detector for object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018.
[18] HU H Z, BAI S, LI A X, et al. Dense relation distillation with context-aware aggregation for few-shot object detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10180-10189.
[19] GAO Y, LI H J, FU W Q. Few-shot learning for image-based bridge damage detection[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 107078.
[20] WANG B, JIANG P, GAO J X, et al. A lightweight few-shot marine object detection network for unmanned surface vehicles[J]. Ocean Engineering, 2023, 277: 114329.
[21] FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[J]. arXiv:1703.03400, 2017.
[22] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[23] DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 764-773.
[24] ZHANG J L, MENG Y M, WU J F, et al. Monitoring sugar crystallization with deep neural networks[J]. Journal of Food Engineering, 2020, 280: 109965.
[25] WEI H J, XU E Y, ZHANG J L, et al. BushNet: effective semantic segmentation of bush in large-scale point clouds[J]. Computers and Electronics in Agriculture, 2022, 193: 106653.
[26] YANG W J, WU J C, ZHANG J L, et al. Deformable convolution and coordinate attention for fast cattle detection[J]. Computers and Electronics in Agriculture, 2023, 211: 108006.
[27] CHILUKURI D M, YI S, SEONG Y. A robust object detection system with occlusion handling for mobile devices[J]. Computational Intelligence, 2022, 38(4): 1338-1364.
[28] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[29] BAYRAKTAR E, YIGIT C B. Conditional-pooling for improved data transmission[J]. Pattern Recognition, 2024, 145: 109978.
[30] CHEN W, HE Z L, ZHANG J. Online monitoring of crack dynamic development using attention-based deep networks[J]. Automation in Construction, 2023, 154: 105022.
[31] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539.
[32] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717.
[33] 孟莉莎, 杨贤昭, 刘惠康. 基于CA-EfficientNetV2的蘑菇图像分类算法研究[J]. 激光与光电子学进展, 2022, 59(24): 56-63.
MENG L S, YANG X Z, LIU H K. Algorithm on mushroom image classification based on CA-EfficientNetV2[J]. Laser & Optoelectronics Progress, 202, 59(24): 56-63.
[34] GUO W, QIAO S, ZHAO C Y, et al. Defect detection for industrial neutron radiographic images based on modified YOLO network[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2023, 1056: 168694.
[35] CHENG G, YUAN X, YAO X W, et al. Towards large-scale small object detection: survey and benchmarks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 13467-13488.
[36] CHEN W Y, LIU Y C, Kira Z, et al. A closer look at few-shot classification[J]. arXiv:1904.04232, 2019.
[37] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 658-666.
[38] KANG B Y, LIU Z, WANG X, et al. Few-shot object detection via feature reweighting[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8419-8428.
[39] LI S F, LI K Y, QIAO Y, et al. A multi-scale cucumber disease detection method in natural scenes based on YOLOv5[J]. Computers and Electronics in Agriculture, 2022, 202: 107363.
[40] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[41] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[42] LI Y W, FENG W Q, LYU S C, et al. Feature reconstruction and metric based network for few-shot object detection[J]. Computer Vision and Image Understanding, 2023, 227: 103600.
[43] TSENG F H, YEH K H, KAO F Y, et al. MiniNet: dense squeeze with depthwise separable convolutions for image classification in resource-constrained autonomous systems[J]. ISA Transactions, 2023, 132: 120-130.
[44] DONG Y P, KANG C X, ZHANG J L, et al. Benchmarking robustness of 3D object detection to common corruptions in autonomous driving[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 1022-1032.
[45] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1800-1807.
[46] PANG J M, CHEN K, SHI J P, et al. Libra R-CNN: towards balanced learning for object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 821-830.
[47] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[48] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[49] SELVARAJU R R, DAS A, VEDANTAM R, et al. Grad-CAM: why did you say that? Visual explanations from deep networks via gradient-based localization[J]. arXiv:1610. 02391, 2016. |