[1] TIAN C, XU Y, LI Z, et al. Attention-guided CNN for image denoising[J]. Neural Networks, 2020, 124: 117-129.
[2] BAUER P, THORPE A, BRUNET G. The quiet revolution of numerical weather prediction[J]. Nature, 2015, 525(7567): 47-55.
[3] JAMJOOM M, MAHMOUD A M, ABBAS S, et al. Gaussian mixture with max expectation guide for stacked architecture of denoising autoencoder and DRBM for medical chest scans and disease identification[J]. Electronics, 2022, 12(1): 105.
[4] ZEB M H, ALOBEIDAT F, TUBAISHAT A, et al. Denoising histopathology images for the detection of breast cancer[J]. Neural Computing and Applications, 2023. DOI:10.1007/s00521-023-08771-y.
[5] TIAN C, FEI L, ZHENG W, et al. Deep learning on image denoising: an overview[J]. Neural Networks, 2020, 131: 251-275.
[6] BUADES A, COLL B, MOREL J M. Nonlocal image and movie denoising[J]. International Journal of Computer Vision, 2008, 76: 123-139.
[7] GAI S, BAO Z, ZHANG K. Vector extension of quaternion wavelet transform and its application to colour image denoising[J]. IET Signal Processing, 2019, 13(2): 133-140.
[8] WU J F, LEE X D. An improved WNNM algorithm for image denoising[J]. Journal of Physics: Conference Series, 2019, 1237(2): 022037.
[9] 李潇瑶, 王炼红, 周怡聪, 等. 自适应非局部 3 维全变分彩色图像去噪[J]. 中国图象图形学报, 2022, 27(12): 3450-3460.
LI X Y, WANG L H, ZHOU Y C, et al. Adaptive nonlocal 3D total variation color image denoising[J]. Chinese Journal of Image and Graphics, 2022, 27(12): 3450-3460.
[10] MAO X, SHEN C, YANG Y B. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[C]//Advances in Neural Information Processing Systems 29, 2016.
[11] 盖杉, 鲍中运. 基于深度学习的高噪声图像去噪算法[J]. 自动化学报, 2020, 46(12): 2672-2680.
GAI S, BAO Z Y. High noise image denoising algorithm based on deep learning[J]. Acta Automatica Sinica, 2020, 46(12): 2672-2680.
[12] ZHANG Q, ZHAO J, TIAN C, et al. A robust deformed convolutional neural network (CNN) for image denoising[J]. CAAI Transactions on Intelligence Technology, 2023, 8(2): 331-342.
[13] FU X, HUANG J, DING X, et al. Clearing the skies: a deep network architecture for single-image rain removal[J]. IEEE Transactions on Image Processing, 2017, 26(6): 2944-2956.
[14] XIAO J, LIU E, ZHAO L, et al. Detail enhancement of image super-resolution based on detail synthesis[J]. Signal Processing: Image Communication, 2017, 50: 21-33.
[15] 吕承侃, 沈飞, 张正涛, 等. 图像异常检测研究现状综述[J]. 自动化学报, 2022, 48(6): 1402-1428.
LV C K, SHEN F, ZHANG Z T, et al. Overview of research status on image anomaly detection[J]. Acta Automatica Sinica, 2022, 48(6): 1402-1428.
[16] SHI Z, METTES P, ZHENG G, et al. Frequency-supervised MR-to-CT image synthesis[C]//Deep Generative Models, and Data Augmentation, Labelling, and Imperfections, First Workshop, DGM4MICCAI 2021, Strasbourg, 2021: 3-13.
[17] RHEE H, JANG Y I, KIM S, et al. LC-FDNet: learned lossless image compression with frequency decomposition network[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 6033-6042.
[18] LI X, JIN X, YU T, et al. Learning omni-frequency region-adaptive representations for real image super-resolution[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, 2021: 1975-1983.
[19] ZHANG X, ZENG H, GUO S, et al. Efficient long-range attention network for image super-resolution[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 649-667.
[20] GUO M H, LIU Z N, MU T J, et al. Beyond self-attention: external attention using two linear layers for visual tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(5): 5436-5447.
[21] LI X, WANG W, HU X, et al. Selective kernel networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 510-519.
[22] CHEN L, LU X, ZHANG J, et al. HINet: half instance normalization network for image restoration[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 182-192.
[23] ALLEN D M. Mean square error of prediction as a criterion for selecting variables[J]. Technometrics, 1971, 13(3): 469-475.
[24] ABDELHAMED A, LIN S, BROWN M S. A high-quality denoising dataset for smartphone cameras[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 1692-1700.
[25] MA K, DUANMU Z, WU Q, et al. Waterloo exploration database: new challenges for image quality assessment models[J]. IEEE Transactions on Image Processing, 2016, 26(2): 1004-1016.
[26] LI H, XIA S, ZHOU B, et al. The growth mechanism of grain boundary carbide in Alloy 690[J]. Materials Characterization, 2013, 81: 1-6.
[27] ZHANG L, WU X, BUADES A, et al. Color demosaicking by local directional interpolation and nonlocal adaptive thresholding[J]. Journal of Electronic Imaging, 2011, 20(2): 023016.
[28] PLOTZ T, ROTH S. Benchmarking denoising algorithms with real photographs[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1586-1595.
[29] DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095.
[30] GU S, ZHANG L, ZUO W, et al. Weighted nuclear norm minimization with application to image denoising[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 2862-2869.
[31] ZHANG K, ZUO W, CHEN Y, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155.
[32] ZHANG K, ZUO W, ZHANG L. FFDNet: toward a fast and flexible solution for CNN-based image denoising[C]// IEEE Transactions on Image Processing, 2018, 27(9): 4608-4622.
[33] TIAN C, XU Y, ZUO W. Image denoising using deep CNN with batch renormalization[J]. Neural Networks, 2020, 121: 461-473.
[34] YUE Z, YONG H, ZHAO Q, et al. Variational denoising network: toward blind noise modeling and removal[C]// Advances in Neural Information Processing Systems 32, 2019.
[35] QUAN Y, CHEN Y, SHAO Y, et al. Image denoising using complex-valued deep CNN[J]. Pattern Recognition, 2021, 111: 107639.
[36] ZHONG R, ZHANG Q. DRFENet: an improved deep learning neural network via dilated skip convolution for image denoising application[J]. Applied Sciences, 2022, 13(1): 28.
[37] TIAN C, ZHENG M, ZUO W, et al. Multi-stage image denoising with the wavelet transform[J]. Pattern Recognition, 2023, 134: 109050.
[38] BIAN S, HE X, XU Z, et al. Hybrid dilated convolution with attention mechanisms for image denoising[J]. Electronics, 2023, 12(18): 3770.
[39] GUO S, YAN Z, ZHANG K, et al. Toward convolutional blind denoising of real photographs[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 1712-1722.
[40] ANWAR S, BARNES N. Real image denoising with feature attention[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019: 3155-3164. |