[1] GONG D, LIU L Q, LE V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019: 1705-1714.
[2] JI D J, PARK J, CHO D H. ConvAE: a new channel autoencoder based on convolutional layers and residual connections[J]. IEEE Communications Letters, 2019, 23(10): 1769-1772.
[3] NGUYEN T N, MEUNIER J. Anomaly detection in video sequence with appearance-motion correspondence[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019: 1273-1283.
[4] YU G, WANG S, CAI Z, et al. Cloze test helps: effective video anomaly detection via learning to complete video events[C]//Proceedings of the 28th ACM International Conference on Multimedia, 2020: 583-591.
[5] PARK H, NOH J, HAM B. Learning memory-guided normality for anomaly detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 14372-14381.
[6] LIU W, LUO W X, LIAN D Z, et al. Future frame prediction for anomaly detection[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6536-6545.
[7] CHANG Y P, TU Z G, XIE W, et al. Clustering driven deep autoencoder for video anomaly detection[C]//Proceedings of the 16th European Conference on Computer Vision, 2020: 329-345.
[8] CHANG Y P, TU Z G, XIE W, et al. Video anomaly detection with spatio-temporal dissociation[J]. Pattern Recognition, 2022, 122(2): 1-12.
[9] WANG W Q, CHANG F, MI H D. Intermediate fused network with multiple timescales for anomaly detection[J]. Neuro-computing, 2021, 433: 37-49.
[10] YE M C, PENG X J, GAN W H, et al. AnoPCN: video anomaly detection via deep predictive coding network[C]//Proceedings of the 27th ACM International Conference on Multimedia, 2019: 1805-1813.
[11] LUO W X, LIU W, LIAN D Z, et al. Video anomaly detection with sparse coding inspired deep neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(3): 1070-1084.
[12] 陈澄, 胡燕. 融合记忆增强的视频异常检测[J]. 计算机工程与应用, 2022, 58(15): 253-259.
CHEN C, HU Y. Video anomaly detection combining memory-augmented[J]. Computer Engineering and Applications, 2022, 58(15): 253-259.
[13] 陈金怡, 罗圣钦, 李洪均. 基于限幅加权骨骼节点滤波的体感交互技术[J]. 数据采集与处理, 2022, 37(3): 715-724.
CHEN J Y,LUO S Q,LI H J. Somatosensory interaction technology based on limiting weighted skeleton node filtering[J]. Data Acquisition and Processing, 2022, 37(3): 715-724.
[14] CLOUGH J R, BYRNE N, OKSUZ I, et al. A topological loss function for deep-learning based image segmentation using persistent homology[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 44(12): 8766-8778.
[15] LI R K, ZHANG Y M, NIU D M, et al. PointVGG: graph convolutional network with progressive aggregating features on point clouds[J]. Neurocomputing, 2021, 429: 187-198.
[16] LUO W X, LIU W, GAO S H. A revisit of sparse coding based anomaly detection in stacked RNN framework[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 341-349.
[17] LUO W X, LIU W, GAO S H. Remembering history with convolutional LSTM for anomaly detection[C]//Proceedings of the 2017 IEEE International Conference on Multimedia and Expo, 2017: 439-444.
[18] DOSOVITSKIY A, FISCHER P, ILG E, et al. FlowNet: learning optical flow with convolutional networks[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, 2015: 2758-2766.
[19] LI Y H, YAO T, PAN Y W, et al. Contextual transformer networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 1489-1500.
[20] 石磊, 籍庆余, 陈清威, 等. 视觉Transformer在医学图像分析中的应用研究综述[J]. 计算机工程与应用, 2023, 59(8): 41-55.
SHI L, JI Q Y, CHEN Q W, et al. Review of research on application of vision transformer in medical image analysis[J]. Computer Engineering and Applications, 2023, 59(8): 41-55.
[21] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision, 2020: 213-229.
[22] WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24.
[23] LIU Q C, XIAO L, YANG J X, et al. CNN-enhanced graph convolutional network with pixel-and superpixel-level feature fusion for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10): 8657-8671. |