[1] 卢官有, 顾正弘. 改进的YOLOv3安检包裹中危险品检测算法[J]. 计算机应用与软件, 2021, 38(1): 197-204.
LU G Y, GU Z H. A dangerous goods detection algorithm based on improved YOLOv3[J]. Computer Applications and Software, 2021, 38(1): 197-204.
[2] 韩宁. 基于深度学习的X射线图像危险品检测与跟踪算法研究[D]. 兰州: 兰州大学, 2018.
HAN N. A deep learning-based dangerous goods detection and tracking algorithm from X-ray images[D]. Lanzhou: Lanzhou University, 2018.
[3] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[4] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, 2015: 1440-1448.
[5] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards realtime object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[6] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386-397.
[7] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 21-37.
[8] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[9] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[10] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[11] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[12] Ultralytics. YOLOv5[CP/OL]. [2020-08-09]. https://github. com/ultralytics/yolov5.
[13] 赵梓杉, 秦玉英, 李刚, 等. 基于深度学习的目标检测算法综述[J]. 汽车实用技术, 2021, 46(17): 207-209.
ZHAO Z S, QIN Y Y, LI G, et al. Survey of object detection algorithms based on deep learning[J]. Automotive Practical Technology, 2021, 46(17): 207-209.
[14] 张志豪. 基于深度学习的目标检测算法研究[D]. 成都: 电子科技大学, 2018: 24-28.
ZHANG Z H. Research on object detection algorithm based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2018: 24-28.
[15] 彭成, 张乔虹, 唐朝晖, 等. 基于YOLOv5增强模型的口罩佩戴检测方法研究[J]. 计算机工程, 2022, 48(4): 39-49.
PENG C, ZHANG Q H, TANG Z H, et al. Research on mask wearing detection method based on YOLOv5 enhanced model[J]. Computer Engineering, 2022, 48(4): 39-49.
[16] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[17] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[18] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[19] 尹靖涵, 瞿绍军, 姚泽楷, 等. 基于YOLOv5的雾霾天气下交通标志识别模型[J]. 计算机应用, 2022, 42(9): 2876-2884.
YIN J H, QU S J, Yao Z K, et al. Traffic sign recognition model in hazy weather based on YOLOv5[J]. Journal of Computer Applications, 2022, 42(9): 2876-2884.
[20] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[21] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 740-755.
[22] 王鹏飞, 黄汉明, 王梦琪. 改进YOLOv5的复杂道路目标检测算法[J]. 计算机工程与应用, 2022, 58(17): 81-92.
WANG P F, HUANG H M, WANG M Q. Complex road target detection algorithm based on improved YOLOv5[J]. Computer Engineering and Applications, 2022, 58(17): 81-92.
[23] 王静, 孙紫雲, 郭苹, 等. 改进YOLOv5的白细胞检测算法[J]. 计算机工程与应用, 2022, 58(4): 134-142.
WANG J, SUN Z Y, GUO P, et al. Improved leukocyte detection algorithm of YOLOv5[J]. Computer Engineering and Applications, 2022, 58(4): 134-142.
[24] 周天绮, 杨志民. 一种改进的K-means算法在城市通勤研究中的应用[J]. 计算机应用与软件, 2019, 36(3): 265-270.
ZHOU T Q, YANG Z M. Application of an improved K-means algorithm in urban commuting research[J]. Computer Applications and Software, 2019, 36(3): 265-270.
[25] WANG B, ZHANG L, WEN L, et al. Towards real-world prohibited item detection: a large-scale X-ray benchmark[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, 2021: 5392-5401.
[26] 邱天衡, 王玲, 王鹏, 等. 基于改进YOLOv5的目标检测算法研究[J]. 计算机工程与应用, 2022, 58(13): 63-73.
QIU T H, WANG L, WANG P, et al. Research on object detection algorithm based on improved YOLOv5[J]. Computer Engineering and Applications, 2022, 58(13): 63-73. |