[1] 刘欣逸, 宁博, 王明, 等. 基于句法增强的细粒度情感三元组抽取方法[J]. 计算机研究与发展, 2023, 60(7): 1649-1660.
LIU X Y, NING B, WANG M, et al. Fine-grained sentiment triple extraction method based on syntactic enhancement[J]. Journal of Computer Research and Development, 2023, 60(7): 1649-1660.
[2] 徐康, 李霏, 姬东鸿. 基于依存图卷积和文本片段搜索的方面情感三元组抽取模型[J]. 计算机工程, 2023, 49(4): 61-67.
XU K, LI F, JI D H. Aspect sentiment triple extraction model based on dependency graph convolution and text span search[J]. Computer Engineering, 2023, 49(4): 61-67.
[3] PENG H, XU L, BING L, et al. Knowing what, how and why: a near complete solution for aspect-based sentiment analysis[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence, Palo Alto, 2020: 8600-8607.
[4] 常思杰, 林浩田, 江静. 融合双阶段解码的实体关系联合抽取方法[J]. 计算机工程与应用, 2023, 59(20): 138-146.
CHANG S J, LIN H T, JIANG J. Joint entity relation extrac-tion based on two-stage decoding[J]. Computer Engineering and Applications, 2023, 59(20): 138-146.
[5] XU L, LI H, LU W, et al. Position-aware tagging for aspect sentiment triplet extraction[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 2339-2349.
[6] 张龙辉, 尹淑娟, 任飞亮, 等. BSLRel: 基于二元序列标注的级联关系三元组抽取模型[J]. 中文信息学报, 2021, 35(6): 74-84.
ZHANG L H, YI S J, REN F L, et al. BSLRel: a binary sequence labeling based cascading relation triple extraction model[J]. Journal of Chinese Information Processing, 2021, 35(6): 74-84.
[7] CHAN Y S, ROTH D. Exploiting syntactico-semantic structures for relation extraction[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, 2011: 551-560.
[8] XU L, CHIA Y K, BING L. Learning span-level interactions for aspect sentiment triplet extraction[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2021: 4755-4766.
[9] LI Y, WANG F, ZHANG W, et al. A more fine-grained aspect-sentiment?opinion triplet extraction task[EB/OL]. [2023-04-29]. https://arxiv.org/pdf/2103.15255.pdf.
[10] 夏鸿斌, 李强, 肖奕飞. 用于方面情感三元组抽取的词对关系学习方法[J]. 模式识别与人工智能, 2022, 35(3): 262-270.
XIA H B, LI Q, XIAO Y F. Word pair relationship learning method for aspect sentiment triplet extraction[J]. Pattern Recognition and Artificial Intelligence, 2022, 35(3): 262-270.
[11] ZHENG S, WANG F, BAO H, et al. Joint extraction of entities and relations based on a novel tagging scheme[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2017: 1227-1236.
[12] ZHANG C, LI Q, SONG D, et al. A multi-task learning framework for opinion triplet extraction[C]//Findings of the Association for Computational Linguistics: EMNLP 2020: 819-828.
[13] WU Z, YING C, ZHAO F, et al. Grid tagging scheme for aspect-oriented fine-grained opinion extraction[C]//Proceeding of the 2020 Conference on Empirical Method in Natural Language Processing, Stroudsburg: ACL, 2020: 2576-2585.
[14] CHEN H, ZHAI Z, FENG F, et al. Enhanced multi-channel graph convolutional network for aspect sentiment triplet extraction[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022: 2974-2985.
[15] DONG LI, WEI FURU, TAN CHUANQI, et al. Adaptive recursive neural network for target-dependent Twitter senti-ment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistic (Volume 2: Short Papers). Stroudburg: ACL, 2014: 49-54.
[16] LUO L, YANG Z H, YANG P, et al. An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition[J]. Bioinformatics, 2018, 4(8): 1381-1388.
[17] ZENG B, YANG H, XU R, et al. LCF: a local context focus mechanism for aspect-based sentiment classification[J]. Applied Sciences, 2019, 9(16): 3389.
[18] YANG H, ZENG B, YAMG J H, et al. A multi-task learning model for Chinese-oriented aspect polarity classification and aspect term extraction[J]. Neurocomputing, 2021, 419: 344-356.
[19] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their composition-ality[C]//Advances in Neural Information Processing Sys-tems 26, 2013.
[20] PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-guage Processing, 2014: 1532-1543.
[21] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference of Neural Information Processing Systems. Red Hook: Curran Associates Inc, 2017: 6000-6010.
[22] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 4171-4186.
[23] LI X, BING L, LI P, et al. A unified model for opinion target extraction and target sentiment prediction[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 2019: 6714-6721.
[24] CHEN S W, WANG Y, LIU J, et al. Bidirectional machine reading comprehension for aspect sentiment triplet extraction[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, 2021: 12666-12674. |