[1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[2] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[3] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[4] 聂光涛, 黄华. 光学遥感图像目标检测算法综述[J]. 自动化学报, 2021, 47(8): 1749-1768.
NIE G T, HUANG H. A survey of object detection in optical remote sensing images[J]. Acta Automatica Sinica, 2021, 47(8): 1749-1768.
[5] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[6] RAMACHANDRAN S, SISTU G, KUMAR V R, et al. Woodscape fisheye object detection for autonomous driving—CVPR 2022 OmniCV workshop challenge[J]. arXiv:2206. 12912, 2022.
[7] 王燕, 吕艳萍. 混合深度CNN联合注意力的高光谱图像分类[J]. 计算机科学与探索, 2023, 17(2): 385-395.
WANG Y, LYU Y P. Hybrid deep CNN-attention for hyperspectral image classification[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 385-395.
[8] DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 764-773.
[9] ZHU X, HU H, LIN S, et al. Deformable convnets v2: more deformable, better results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9308-9316.
[10] BARMAN A, WU W, LOCE R P, et al. Person re-identification using overhead view fisheye lens cameras[C]//Proceedings of the 2018 IEEE International Symposium on Technologies for Homeland Security, 2018: 1-7.
[11]JO Y G, HONG S H, HWANG S S, et al. Fisheye lens camera based autonomous valet parking system[J]. arXiv:2104. 13119, 2021.
[12] BERTOZZI M, CASTANGIA L, CATTANI S, et al. 360 detection and tracking algorithm of both pedestrian and vehicle using fisheye images[C]//Proceedings of the 2015 IEEE Intelligent Vehicles Symposium, 2015: 132-137.
[13] YANG C Y, CHEN H H. Efficient face detection in the fisheye image domain[J]. IEEE Transactions on Image Processing, 2021, 30: 5641-5651.
[14] LO Y C, HUANG C C, TSAI Y F, et al. Face recognition for fisheye images[C]//Proceedings of the 2022 IEEE International Conference on Image Processing, 2022: 146-150.
[15] WEI X, WEI Y, LU X. RMDC: rotation-mask deformable convolution for object detection in top-view fisheye cameras[J]. Neurocomputing, 2022, 504: 99-108.
[16] WANG C Y, LIAO H Y M, YEH I H. Designing network design strategies through gradient path analysis[J]. arXiv: 2211. 04800, 2022.
[17] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[18] 贾天豪, 彭力, 戴菲菲. 引入残差学习与多尺度特征增强的目标检测器[J]. 计算机科学与探索, 2023, 17(5): 1102-1111.
JIA T H, PENG L, DAI F F. Object detector with residual learning and multi-scale feature enhancement[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1102-1111.
[19] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[20] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[21] 王鑫鹏, 王晓强, 林浩, 等. 深度学习典型目标检测算法的改进综述[J]. 计算机工程与应用, 2022, 58(6): 42-57.
WANG X P, WANG X Q, LIN H, et al. Review on improvement of typical object detection algorithms in deep learning[J]. Computer Engineering and Applications, 2022, 58(6): 42-57.
[22] FU J, BAJI? I V, VAUGHAN R G. Datasets for face and object detection in fisheye images[J]. Data in Brief, 2019, 27: 104752.
[23] AGRAWAL N, PRABHAKARAN V, WOBBER T, et al. Design tradeoffs for {SSD} performance[C]//Proceedings of the USENIX 2008 Annual Technical Conference, 2008: 57-70.
[24] CONTRIBUTORS M. YOLOv8 by MMYOLO[CP/OL].(2023-05-13)[2023-05-18].https://github.com/open?mmlab/mmyolo/tree/main/configs/yolov8, 2023.
[25] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[26] CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162.
[27] 包俊, 刘宏哲. 融合可变形卷积网络的鱼眼图像目标检测[J]. 计算机工程, 2021, 47(4): 248-255.
BAO J, LIU H Z. Object detection in fisheye images combining deformable convolutional networks[J]. Computer Engineering, 2021, 47(4): 248-255.
[28] LI T, TONG G, TANG H, et al. Fisheyedet: a self-study and contour-based object detector in fisheye images[J]. IEEE Access, 2020, 8: 71739-71751.
[29] RASHED H, MOHAMED E, SISTU G, et al. FisheyeYOLO: object detection on fisheye cameras for autonomous driving[C]//Proceedings of the Machine Learning for Autonomous Driving NeurIPS 2020 Virtual Workshop, 2020. |