[1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[2] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[3] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[4] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[5] REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[6] BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection[C]//Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, 2020.
[7] JOCHER G, CHAURASIA A, et al. YOLOv5[EB/OL]. [2023-06-08]. https://github.com/ultralytics/yolov5.
[8] 郭瑞鸿, 张莉, 杨莹, 等.基于改进SSD的X光图像管制刀具检测与识别[J].激光与光电子学进展, 2021, 58(4): 65-72.
GUO R H, ZHANG L, YANG Y, et al. X-ray image controlled knife detection and recognition based on improved SSD[J]. Laser & Optoelectronics Progress, 2021, 58(4): 65-72.
[9] 吴海滨, 魏喜盈, 刘美红, 等.结合空洞卷积和迁移学习改进YOLOv4的X光安检危险品检测[J].中国光学, 2021, 14(6): 1417-1425.
WU H B, WEI X Y, LIU M H, et al. Improved YOLOv4 for dangerous goods detection in X?ray inspection combined with atrous convolution and transfer learning[J]. Chinese Optics, 2021, 14(6): 1417-1425.
[10] 穆思奇, 林进健, 汪海泉, 等.基于改进YOLOv4的X射线图像违禁品检测算法[J].兵工学报, 2021, 42(12): 2675-2683.
MU S Q, LIN J J, WANG H Q, et al. An algorithm for detection of prohibited items in X-ray images based on im-proved YOLOv4[J]. Acta Armamentarii, 2021, 42(12): 2675-2683.
[11] 董乙杉, 李兆鑫, 郭靖圆, 等.一种改进YOLOv5的X光违禁品检测模型[J].激光与光电子学进展, 2023, 60(4): 359-366.
DONG Y S, LI Z X, GUO J Y, et al. Improved YOLOv5 model for X-ray prohibited item detection[J]. Laser & Optoelectronics Progress, 2023, 60(4): 359-366.
[12] 李文强, 陈莉, 谢旭, 等.改进YOLOv5的X光图像违禁品检测算法[J].计算机工程与应用, 2023, 59(16): 170-176.
LI W Q, CHEN L, XIE X, et al. Algorithm for detecting prohibited items in X-ray images based on improved YOLOv5[J]. Computer Engineering and Applications, 2023, 59(16): 170-176.
[13] 赵振兵, 王帆帆, 刘良帅, 等.基于注意力特征融合YOLOv5模型的无人机输电线路航拍图像金具检测方法[J].电测与仪表, 2023, 60(3): 145-152.
ZHAO Z B, WANG F F, LIU L S, et al. Hardware detection method of aerial image of UAV transmission line based on attention feature fusion YOLOv5 model[J]. Electrical Measurement & Instrumentation, 2023, 60(3): 145-152.
[14] 胡皓, 郭放, 刘钊.改进YOLOX-S模型的施工场景目标检测[J].计算机科学与探索, 2023, 17(5): 1089-1101.
HU H, GUO F, LIU Z. Object detection based on improved YOLOX-S model in construction sites[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1089-1101.
[15] 粟兴旺, 王晓明, 黄金玻, 等.基于可变形卷积与注意力机制的X光安检违禁品检测[J].电子测量技术, 2023, 46(10): 98-108.
SU X W, WANG X M, HUANG J B, et al. Prohibited itemsdetection based on deformable convolution and attention mechanism in X-ray security inspection[J]. Electronic Measurement Technology, 2023, 46(10): 98-108.
[16] 孙嘉傲, 董乙杉, 郭靖圆, 等. 自适应与多尺度特征融合的X光违禁品检测[J]. 计算机工程与应用, 2024, 60(2): 96-102.
SUN J A, DONG Y S, GUO J Y, et al. Detection of X-ray contraband by adaptive and multi-scale feature fusion[J]. Computer Engineering and Applications, 2024, 60(2): 96-102.
[17] 张良, 薛志诚.基于自适应多尺度特征融合的X光违禁品检测[J/OL].信号处理 [2023-09-09].https: //kns-cnki-net.webvpn.las.ac.cn/kcms/detail/11.2406.tn.20230831.1616.
004.html.
ZHANG L, XUE Z C. X-ray prohibited items detection based on adaptive multi-scale feature fusion[J/OL]. Journal of Signal Processing [2023-09-09]. https://kns-cnki-net.webvpn.las.ac.cn/kcms/detail/11.2406.tn.20230831.1616.004.html.
[18] 李松, 亚森江·木沙.改进YOLOv7的X射线图像违禁品实时检测[J]. 计算机工程与应用, 2023, 59(12): 193-200.
LI S, YASENJIANG M. Improved YOLOv7 X-ray image real-time detection of prohibited items[J]. Computer Engineering and Applications, 2023, 59(12): 193-200.
[19] 成浪, 敬超.基于改进YOLOv7的X线图像旋转目标检测[J]. 图学学报, 2023, 44(2): 324-334.
CHENG L, JING C. X-ray image rotating object detection based on improved YOLOv7[J]. Journal of Graphics, 2023, 44(2): 324-334.
[20] CHEN J, KAO S, HE H, et al. Run, don’t walk: chasing higher flops for faster neural networks[J]. arXiv:2303. 03667, 2023.
[21] ZHANG Q L, YANG Y B. SA-Net: shuffle attention for deep convolutional neural networks[C]//Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing, 2021: 2235-2239.
[22] YANG L, ZHANG Y, LI L, et al.SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 11863-11874.
[23] ZHU X Z, HU H, LIN S, et al. Deformable ConvNets v2: more deformable, better results[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9308-9316.
[24] DAI X Y, CHEN Y P, XIAO B, et al. Dynamic head: unifying object detection heads with attentions[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 7369-7378.
[25] CHEN Y P, DAI X Y, LIU M C, et al. Dynamic ReLU[J]. arXiv:2003.10027, 2020.
[26] ZHAO C, ZHU L, DOU S, et al. Detecting overlapped objects in X-ray security imagery by a label-aware mechanism[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 998-1009. |