[1] ZOU Z, SHI Z, GUO Y, et al. Object detection in 20 years: a survey[J]. arXiv:1905.05055, 2019.
[2] WU X, SAHOO D, HOI S C H. Recent advances in deep learning for object detection[J]. Neurocomputing, 2020, 396: 39-64.
[3] ZAIDI S S A, ANSARI M S, ASLAM A, et al. A survey of modern deep learning based object detection models[J]. Digital Signal Processing, 2022: 103514.
[4] JIAO L, ZHANG F, LIU F, et al. A survey of deep learning-based object detection[J]. IEEE Access, 2019, 7: 128837-128868.
[5] ZHAO Z Q, ZHENG P, XU S, et al. Object detection with deep learning: a review[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11): 3212-3232.
[6] 高新波, 莫梦竟成, 汪海涛, 等.小目标检测研究进展[J].数据采集与处理, 2021, 36(3): 391-417.
GAO X B, MO M J C, WANG H T, et al. Recent advances in small object detection[J]. Journal of Data Acquisition and Processing, 2021, 36(3): 391-417.
[7] CHENG G, YUAN X, YAO X, et al. Towards large-scale small object detection: survey and benchmarks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 13467-13488.
[8] ZHAO Y, JU Z, SUN T, et al. TGC-YOLOv5: an enhanced YOLOv5 drone detection model based on transformer, GAM & CA attention mechanism[J]. Drones, 2023, 7(7): 446.
[9] WU Y, LI J. YOLOv4 with deformable-embedding-transformer feature extractor for exact object detection in aerial imagery[J]. Sensors, 2023, 23(5): 2522.
[10] JUNG H K, CHOI G S. Improved YOLOv5: efficient object detection using drone images under various conditions[J]. Applied Sciences, 2022, 12(14): 7255.
[11] BETTI A, TUCCI M. YOLO-S: a lightweight and accurate YOLO-like network for small object detection in aerial imagery[J]. Sensors, 2023, 23(4): 1865.
[12] PEI W, SHI Z, GONG K. Small object detection with remote sensing images based on an improved YOLOv5 algorithm[J]. Frontiers in Neurorobotics, 2023, 16: 1074862.
[13] 谢椿辉, 吴金明, 徐怀宇. 改进YOLOv5的无人机影像小目标检测算法[J]. 计算机工程与应用, 2023, 59(9): 198-206.
XIE C H, WU J M, XU H Y. Small object detection algorithm based on improved YOLOv5 in UAV image[J]. Computer Engineering and Applications, 2023, 59(9): 198-206.
[14] 陈卫彪, 贾小军, 朱响斌, 等. 基于DSM-YOLO v5的无人机航拍图像目标检测[J]. 计算机工程与应用, 2023, 59(18): 226-233.
CHEN W B, JIA X J, ZHU X B, et al. Target detection for UAV image based on DSM-YOLO v5[J]. Computer Engineering and Applications, 2023, 59(18): 226-233.
[15] 张朝阳, 张上, 王恒涛, 等. 多尺度下遥感小目标多头注意力检测[J]. 计算机工程与应用, 2023, 59(8): 227-238.
ZHANG Z Y, ZHANG S, WANG H T, et al. Multi-head attention detection of small targets in remote sensing at multiple scales[J]. Computer Engineering and Applications, 2023, 59(8): 227-238.
[16] 杨晨, 佘璐, 杨璐, 等. 改进YOLOv5的遥感影像目标检测算法[J]. 计算机工程与应用, 2023, 59(15): 76-86.
YANG C, SHE L, YANG L, et al. Improved YOLOv5 object detection algorithm for remote sensing images[J]. Computer Engineering and Applications, 2023, 59(15): 76-86.
[17] 陈佳慧, 王晓虹. 改进YOLOv5的无人机航拍图像密集小目标检测算法[J]. 计算机工程与应用, 2024, 60(3): 100-108.
CHEN J H, WANG X H. Dense small object detection algorithm based on improved YOLOv5 in UAV aerial images[J]. Computer Engineering and Applications, 2024, 60(3): 100-108.
[18] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788.
[19] LIANG S, WU H, ZHEN L, et al. Edge YOLO: real-time intelligent object detection system based on edge-cloud cooperation in autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 25345-25360.
[20] SILIANG M, YONG X. MPDIoU: a loss for efficient and accurate bounding box regression[J]. arXiv:2307.07662, 2023.
[21] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv: 2004.10934, 2020.
[22] DU D, ZHU P, WEN L, et al.VisDrone-DET2019: the vision meets drone object detection in image challenge results[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshops, 2019: 213-226.
[23] GE Z, LIU S, WANG F, et al. YOLOx: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[24] PEYRé G, CUTURI M. Computational optimal transport: with applications to data science[J]. Foundations and Trends? in Machine Learning, 2019, 11(5/6): 355-607.
[25] ARISTODEMO A, GEMIGNANI L. Accelerating the Sinkhorn-Knopp iteration by Arnoldi-type methods[J]. Calcolo, 2020, 57(1): 10.
[26] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems 28, 2015.
[27] LAW H, DENG J. CornerNet: detecting objects as paired keypoints[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 734-750.
[28] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475. |