[1] SHUAI B, BERNESHAWI A, LI X, et al. SiamMOT: Siamese multi-object tracking[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 12372-12382.
[2] ZHOU X, KOLTUN V, KR?HENBüHL P. Tracking objects as points[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 474-490.
[3] ZHANG Y, WANG C, WANG X, et al. FairMOT: on the fairness of detection and re-identification in multiple object tracking[J]. International Journal of Computer Vision, 2021, 129(11): 3069-3087.
[4] ZHANG Y, SUN P, JIANG Y, et al. ByteTrack: multi-object tracking by associating every detection box[J]. arXiv:2110. 06864, 2021.
[5] BEWLEY A, GE Z, OTT L, et al. Simple online and realtime tracking[C]//Proceedings of the 2016 IEEE International Conference on Image Processing, 2016: 3464-3468.
[6] KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering, 1960, 82D: 35-45.
[7] WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]//Proceedings of the 2017 IEEE International Conference on Image Processing, 2017: 3645-3649.
[8] WANG Z, ZHENG L, LIU Y, et al. Towards real-time multi-object tracking[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 107-122.
[9] VOIGTLAENDER P, KRAUSE M, OSEP A, et al. MOTs: multi-object tracking and segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 7942-7951.
[10] PENG J, WANG C, WAN F, et al. Chained-tracker: chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 145-161.
[11] ZHU J, YANG H, LIU N, et al. Online multi-object tracking with dual matching attention networks[C]//Proceedings of the 15th European Conference on Computer Vision, 2018: 366-382.
[12] DANELLJAN M, BHAT G, SHAHBAZ KHAN F, et al. ECO: efficient convolution operators for tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6638-6646.
[13] FENG W, HU Z, WU W, et al. Multi-object tracking with multiple cues and switcher-aware classification[J]. arXiv: 1901.06129, 2019.
[14] YIN J, WANG W, MENG Q, et al. A unified object motion and affinity model for online multi-object tracking[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 6768-6777.
[15] ZHENG L, TANG M, CHEN Y, et al. Improving multiple object tracking with single object tracking[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 2453-2462.
[16] ZHOU X, WANG D, KR?HENBüHL P. Objects as points[J]. arXiv:1904.07850, 2019.
[17] SRIGRAROM S, CHEW K H. Hybrid motion-based object detection for detecting and tracking of small and fast moving drones[C]//Proceedings of the 2020 International Conference on Unmanned Aircraft Systems, 2020: 615-621.
[18] LI W, MU J, LIU G. Multiple object tracking with motion and appearance cues[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshops, 2019.
[19] BERGMANN P, MEINHARDT T, LEAL-TAIXE L. Tracking without bells and whistles[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019: 941-951.
[20] HAN S, HUANG P, WANG H, et al. MAT: motion-aware multi-object tracking[J]. Neurocomputing, 2022, 476: 75-86.
[21] WANG S, HAN R, FENG W, et al. Multiple human tracking in non-specific coverage with wearable cameras[C]//Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing, 2021: 2200-2204.
[22] AHARON N, ORFAIG R, BOBROVSKY B Z. BoT-SORT: robust associations multi-pedestrian tracking[J]. arXiv:2206. 14651, 2022.
[23] MUR-ARTAL R, TARDóS J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262.
[24] CAMPOS C, ELVIRA R, RODRíGUEZ J J G, et al. ORB-SLAM3: an accurate open-source library for visual, visual-inertial, and multimap SLAM[J]. IEEE Transactions on Robotics, 2021, 37(6): 1874-1890.
[25] HYUN J, KANG M, WEE D, et al. Detection recovery in online multi-object tracking with sparse graph tracker[J]. arXiv:2205.00968, 2022.
[26] BRASó G, LEAL-TAIXé L. Learning a neural solver for multiple object tracking[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 6247-6257.
[27] CHU P, FAN H, TAN C C, et al. Online multi-object tracking with instance-aware tracker and dynamic model refreshment[C]//Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision, 2019: 161-170.
[28] MILAN A, LEAL-TAIXé L, REID I, et al. MOT16: a benchmark for multi-object tracking[J]. arXiv:1603.00831, 2016.
[29] FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.
[30] BAY H, TUYTELAARS T, GOOL L V. SURF: speeded up robust features[C]//Proceedings of the 9th European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2006: 404-417.
[31] LUITEN J, OSEP A, DENDORFER P, et al. HOTA: a higher order metric for evaluating multi-object tracking[J]. International Journal of Computer Vision, 2021, 129(2): 548-578.
[32] BERNARDIN K, STIEFELHAGEN R. Evaluating multiple object tracking performance: the clear MOT metrics[J]. EURASIP Journal on Image and Video Processing, 2008. DOI: 10.1155/2008/246309.
[33] KUHN H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics Quarterly, 1955, 2(1/2): 83-97.
[34] CHU Q, OUYANG W, LIU B, et al. DASOT: a unified framework integrating data association and single object tracking for online multi-object tracking[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020: 10672-10679.
[35] CHU P, LING H. FAMNet: joint learning of feature, affinity and multi-dimensional assignment for online multiple object tracking[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019: 6172-6181.
[36] HE Y, WEI X, HONG X, et al. Identity-quantity harmonic multi-object tracking[J]. IEEE Transactions on Image Processing, 2022, 31: 2201-2215.
[37] DAI P, WENG R, CHOI W, et al. Learning a proposal classifier for multiple object tracking[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 2443-2452.
[38] STADLER D, BEYERER J. Multi-pedestrian tracking with clusters[C]//Proceedings of the 2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance, 2021: 1-10. |