计算机工程与应用 ›› 2010, Vol. 46 ›› Issue (33): 169-171.DOI: 10.3778/j.issn.1002-8331.2010.33.047

• 图形、图像、模式识别 • 上一篇    下一篇

运动想象脑电信号识别研究

肖 丹,胡剑锋   

  1. 江西蓝天学院 信息技术研究所,南昌 330098
  • 收稿日期:2009-04-02 修回日期:2009-06-09 出版日期:2010-11-21 发布日期:2010-11-21
  • 通讯作者: 肖 丹

Identification of motor imagery EEG signal

XIAO Dan,HU Jian-feng   

  1. Institute of Information and Technology,Jiangxi Blue Sky University,Nanchang 330098,China
  • Received:2009-04-02 Revised:2009-06-09 Online:2010-11-21 Published:2010-11-21
  • Contact: XIAO Dan,HU Jian-feng

摘要: 通过对运动想象脑电信号的分类,对受试者进行身份识别。采用一种盲源分离算法——二阶盲辨识对运动想象脑电信号进行处理,提高运动想象脑电信号的信噪比,进而采用Fisher距离对处理后的信号进行特征提取,最后采用BP神经网络对特征集进行分类,从而实现对受试者的身份识别。对3位受试者的4类运动想象脑电信号分别进行了分类识别,结果显示,4类运动想象脑电信号的识别率均达到80%左右,其中最高的是想象舌动脑电信号,其识别率达到88.1%,这在类似研究中属于较高的水平。

关键词: 身份识别, 二阶盲辨识, 运动想象, 脑电

Abstract: Subjects are identified by classifying motor imagery EEG signal.Second-Order Blind Identification(SOBI),a Blind Source Separation(BSS) algorithm is applied to preprocess EEG data for higher signal-to-noise ratio.Subsequently,Fisher distance is used to extract features.Finally,classification of extracted features is performed by back-propagation neural networks.Four types motor imagery EEG of three subjects is classified respectively.The results show that the average classification accuracy achieves over 80%,and the highest is 88.1% on tongue movement imagery EEG.

Key words: person identification, second-order blind identification, motor imagery, Electroencephalo gram(EEG)

中图分类号: