计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (14): 148-157.DOI: 10.3778/j.issn.1002-8331.2004-0078
熊杰,彭军,杨文姬,黄丽芳
XIONG Jie, PENG Jun, YANG Wenji, HUANG Lifang
摘要:
目前基于彩色图像的手姿态2D关键点热图估计大多数采用卷积姿势机或沙漏网络进行,但这两种网络不能同时满足高分辨率表示保持学习和多尺度特征融合。针对该问题引用了一种多尺度高分辨率保持的网络,该网络采用高低分辨率表示并行设计的结构,并通过融合所有分辨率表示增强各分辨率表示的特征,而且拥有多个阶段提取高质量特征用于2D热图估计。为得到3D手姿态,还使用了全局旋转视角不变的方法将2D热图映射到3D姿态。在三个公开数据集(RHD、STB、Dexter+Object)上分别对2D手姿态估计和3D手姿态估计进行了实验,结果验证了该方法在手姿态估计中的有效性。