计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (7): 8-16.DOI: 10.3778/j.issn.1002-8331.1911-0415
曾春艳,马超峰,王志锋,朱栋梁,赵楠,王娟,刘聪
ZENG Chunyan, MA Chaofeng, WANG Zhifeng, ZHU Dongliang, ZHAO Nan, WANG Juan, LIU Cong
摘要:
说话人识别由于其独特的方便性、经济性和准确性等优势,已成为人们日常生活与工作中重要的身份认证方式。然而在实际应用场景下,对说话人识别系统的准确性、鲁棒性、迁移性、实时性等提出了巨大的挑战。近年来深度学习在特征表达和模式分类方面表现优异,为说话人识别技术的进一步发展提供了新方向。相较于传统说话人识别技术(如GMM-UBM、GMM-SVM、JFA、i-vector等),聚焦于深度学习框架下的说话人识别方法,按照深度学习在说话人识别中的作用方式,将目前的研究分为基于深度学习的特征表达、基于深度学习的后端建模、端到端联合优化三种类别,并分析和总结了其典型算法的特点及网络结构,对其具体性能进行了对比分析。最后总结了深度学习在说话人识别中的应用特点及优势,进一步分析了目前说话人识别研究面临的问题及挑战,并展望了深度学习框架下说话人识别研究的前景,以期推动说话人识别技术的进一步发展。