计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (2): 35-41.DOI: 10.3778/j.issn.1002-8331.1812-0361
马倩茹,冶继民
MA Qianru, YE Jimin
摘要: 快速独立成分分析(Fast Independent Component Analysis,FastICA)是解决盲源分离问题使用最广泛的方法。在实际中,只能得到有限数据样本,所以采用的均是基于样本的FastICA算法。而常见的FastICA算法的收敛性分析均属于全集FastICA算法的收敛性分析,所以研究基于样本FastICA算法的收敛性和算法的一致性有至关重要的意义。以一种更简洁的方法证明了全集FastICA的相关收敛性质,包括对比函数的局部极大值和FastICA迭代函数不动点之间的关系。引入狄拉克函数,构造观测信号的概率密度函数,通过大数定律,给出了基于样本的FastICA算法收敛性条件。依据M-估计一致性定理,证明了FastICA给出的估计是一致估计。仿真实验的结果验证了FastICA估计的一致性。