计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (5): 204-209.DOI: 10.3778/j.issn.1002-8331.2001-0159
张忠民,刘金鑫,席志红
ZHANG Zhongmin, LIU Jinxin, XI Zhihong
摘要:
针对传统分割一致性检验视差细化算法处理低纹理图片时优化效果较差的问题,提出一种基于熵率超像素分割的改进方法,使用基于熵率的超像素分割算法代替均值漂移(Mean-shift)分割算法。针对参考图像进行超像素分割处理;将每一个分割块进行统计分析,根据集中趋势值筛选可信值与不可信值;进行视差填充处理获得最终优化后的视差图。选取15组Middlebury数据集中的图像对进行视差图获取并检测。实验结果表明,基于熵率超像素分割的改进方法对于低纹理图片和纹理复杂的图片都有着较好的优化效果,该算法平均误匹配率较传统算法最多降低了5.88个百分点。