计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (8): 95-101.DOI: 10.3778/j.issn.1002-8331.1511-0034

• 网络、通信与安全 • 上一篇    下一篇

基于多特征的Android恶意软件检测方法

程运安,汪奕祥   

  1. 合肥工业大学 计算机与信息学院,合肥 230009
  • 出版日期:2017-04-15 发布日期:2017-04-28

Android malware detection method based on Naive Bayes algorithm with multiple characters

CHENG Yun’an, WANG Yixiang   

  1. School of Computer and Information, Hefei University of Technology, Hefei 230009, China
  • Online:2017-04-15 Published:2017-04-28

摘要: 传统的基于权限的Android恶意软件检测方法检测率较高,但存在较高的误报率,而基于函数调用的检测方法特征提取困难,难以应用到移动平台上。因此,在保留传统权限特征的基础上,提出了以权限和资源文件多特征组合方式的朴素贝叶斯检测方法,该方法所选特征提取简便,且具有较低的误报率,有效弥补传统检测方法的不足。实验从4 396个恶意样本和4 500个正常样本中随机抽取5组恶意样本和5组正常样本集,分别作了基于权限和基于多特征的对比实验。实验结果表明,与基于权限的分类方法相比,基于多特征的分类方法能显著地降低误报率,因此基于多特征的检测方法效果更优。

关键词: Android系统, 多特征, 朴素贝叶斯, 恶意软件

Abstract: Traditional malware detecting methods on Android system based on permissions have a high detecting rate, but also have a high false positive rate. The characters of the methods based on API Calls are hard to extract, so the method is difficult to apply to mobile platform. This article proposes an Android detecting method based on the Naive Bayes algorithm with the characters combination of permissions and resources. The characters are easy to extract and the experiment shows that the method has a low false positive rate. It collects 4, 396 malwares and 4, 500 benign applications and randomly selects five groups of malwares and five groups of benign applications as the test sets. The contrast experiment on the test set with permissions and multiple characters is done. The result presents, compared with the method based on permissions, the method based on multiple characters, can remarkably reduce the false positive rate. The method based on multiply characters is better.

Key words: Android system, multiple characters, Naive Bayes, malware