计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (23): 122-128.DOI: 10.3778/j.issn.1002-8331.2007-0206
王玉联,鲁鸣鸣
WANG Yulian, LU Mingming
摘要:
Android恶意软件的几何式增长驱动了Android恶意软件自动检测领域的发展。一些工作从可解释性的角度来分析Android恶意软件,通过分析模型获取最大影响的特征,为深度学习模型提供了一定的可解释性。这些方法基于特征相互独立的强假设,仅仅考虑特征各自对模型的影响,而在实际中特征之间总是存在着耦合,仅考虑单个特征对模型的影响,难以反映耦合作用,不能刻画不同类型软件中敏感API的组合模式。为解决该问题,将Android软件刻画成图,并结合图的结构信息和图节点内部的信息提出了一种基于图嵌入的方法来检测Android恶意软件。该方法通过注意力机制学习Android软件的低维稠密嵌入表示。实验结果表明,使用学到的嵌入表示进行恶意软件检测,不仅具有较高的分类精度,还可以通过分析注意力分数较大的路径寻找影响模型决策的模式以及定位恶意行为所涉及的敏感API序列。