计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (1): 200-206.DOI: 10.3778/j.issn.1002-8331.1911-0169
张永宏,严斌,田伟,王剑庚
ZHANG Yonghong, YAN Bin, TIAN Wei, WANG Jiangeng
摘要:
针对复杂地形条件下道路特征选取不具代表性,分割精度低的问题,提出了一种基于卷积神经网络(PPMU-net)的高分辨率遥感道路提取的方法。将3通道的高分二号光谱信息与相应的地形信息(坡度、坡向、数字高程信息)进行多特征融合,合成6通道的遥感图像;对多特征的遥感图像进行切割并利用卷积网络(CNN)筛选出含道路的图像;将只含道路的遥感图像送进PPMU-net中训练,构建出高分辨率遥感图像道路提取模型。在与U-net神经网络、PSPnet神经网络相比时,所提的方法在对高分辨率遥感道路提取时能够达到较好的效果,提高了复杂地形条件下道路分割的精度。