[1] CAMMARANO D, JAMSHIDI S, HOOGENBOOM G, et al. Processing tomato production is expected to decrease by 2050 due to the projected increase in temperature[J]. Nature Food, 2022, 3(6): 437-444.
[2] COLLINS E J, BOWYER C, TSOUZA A, et al. Tomatoes: an extensive review of the associated health impacts of tomatoes and factors that can affect their cultivation[J]. Biology, 2022, 11(2): 239.
[3] FENG Q C, WANG X N, WANG G H, et al. Design and test of tomatoes harvesting robot[C]//Proceedings of the 2015 IEEE International Conference on Information and Automation. Piscataway: IEEE, 2015: 949-952.
[4] 王丹阳, 梁伟红, 李玉萍, 等. 面向不平衡数据的木薯叶部病害图像识别方法[J]. 中国农机化学报, 2025, 46(3): 101-107.
WANG D Y, LIANG W H, LI Y P, et al. Cassava leaf disease image recognition method for imbalanced data[J]. Journal of Chinese Agricultural Mechanization, 2025, 46(3): 101-107.
[5] MOALLEM P, SERAJODDIN A, POURGHASSEM H. Computer vision-based apple grading for golden delicious apples based on surface features[J]. Information Processing in Agriculture, 2017, 4(1): 33-40.
[6] LUO L F, TANG Y C, LU Q H, et al. A vision methodology for harvesting robot to detect cutting points on peduncles of double overlapping grape clusters in a vineyard[J]. Computers in Industry, 2018, 99: 130-139.
[7] LIU G X, MAO S Y, KIM J H. A mature-tomato detection algorithm using machine learning and color analysis[J]. Sensors, 2019, 19(9): 2023.
[8] SULTANA F, SUFIAN A, DUTTA P. Evolution of image segmentation using deep convolutional neural network: a survey[J]. Knowledge-Based Systems, 2020, 201/202: 106062.
[9] HU C H, LIU X, PAN Z, et al. Automatic detection of single ripe tomato on plant combining faster R-CNN and intuitionistic fuzzy set[J]. IEEE Access, 2019, 7: 154683-154696.
[10] HUANG Y P, WANG T H, BASANTA H. Using fuzzy mask R-CNN model to automatically identify tomato ripeness[J]. IEEE Access, 2020, 8: 207672-207682.
[11] GE Y H, LIN S, ZHANG Y H, et al. Tracking and counting of tomato at different growth period using an improving YOLO-deepsort network for inspection robot[J]. Machines, 2022, 10(6): 489.
[12] APPE S N, ARULSELVI G, GN B. CAM-YOLO: tomato detection and classification based on improved YOLOv5 using combining attention mechanism[J]. PeerJ Computer Science, 2023, 9: e1463.
[13] WANG S, XIANG J X, CHEN D Q, et al. A method for detecting tomato maturity based on deep learning[J]. Applied Sciences, 2024, 14(23): 11111.
[14] CHEN W B, LIU M C, ZHAO C J, et al. MTD-YOLO: multi-task deep convolutional neural network for cherry tomato fruit bunch maturity detection[J]. Computers and Electronics in Agriculture, 2024, 216: 108533.
[15] LI A, WANG C R, JI T T, et al. D3-YOLOv10: improved YOLOv10-based lightweight tomato detection algorithm under facility scenario[J]. Agriculture, 2024, 14(12): 2268.
[16] ZHAO Z M, CHEN S, GE Y H, et al. RT-DETR-tomato: tomato target detection algorithm based on improved RT-DETR for agricultural safety production[J]. Applied Sciences, 2024, 14(14): 6287.
[17] GU Z C, MA X D, GUAN H O, et al. Tomato fruit detection and phenotype calculation method based on the improved RTDETR model[J]. Computers and Electronics in Agriculture, 2024, 227: 109524.
[18] LI W D, LI Z Y, WANG C S, et al. An improved SSD lightweight network with coordinate attention for aircraft target recognition in scene videos[J]. Journal of Intelligent & Fuzzy Systems, 2024, 46(1): 355-368.
[19] LI B, ZHU H Y. Greenhouse tomato detection based on CU-SSD[C]//Proceedings of the 2024 6th International Conference on Communications, Information System and Computer Engineering. Piscataway: IEEE, 2024: 936-942.
[20] NYARKO B N E, BIN W, ZHOU J Z, et al. Tomato fruit disease detection based on improved single-shot detection algorithm[J]. Journal of Plant Protection Research, 2023, 63(4): 405-417.
[21] JOCHER G, QIU J. Ultralytics YOLO11[EB/OL]. (2024-09-30)[2025-06-19]. https://github.com/ultralytics/ultralytics.
[22] LI R Z, JI Z J, HU S K, et al. Tomato maturity recognition model based on improved YOLOv5 in greenhouse[J]. Agronomy, 2023, 13(2): 603.
[23] MA D A, TANG P, ZHAO L J, et al. Review of data augmentation for image in deep learning[J]. Journal of Image and Graphics, 2021, 26(3): 487-502.
[24] 张澎涛, 张宪奇, 黄建平, 等. 基于YOLOv8n的烟支缺陷检测算法及部署[J/OL]. 计算机应用, 2025: 1-9(2025-04-02). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JSJY20250402001&dbname=CJFD&dbcode=CJFQ.
ZHANG P T, ZHANG X Q, HUANG J P, et al. YOLOv8n-based algorithm for cigarette defect detection and deployment[J/OL]. Journal of Computer Applications, 2025: 1-9(2025-04-02). https://kns.cnki.net/KCMS/detail/detail.aspx?filename=JSJY20250402001&dbname=CJFD&dbcode=CJFQ.
[25] YAN C M, LI H L. CAPNet: tomato leaf disease detection network based on adaptive feature fusion and convolutional enhancement[J]. Multimedia Systems, 2025, 31(3): 178.
[26] SUN H, FU R, WANG X W, et al. Efficient deep learning-based tomato leaf disease detection through global and local feature fusion[J]. BMC Plant Biology, 2025, 25(1): 311.
[27] LIU J J, ZHANG B, CHENG X, et al. An adaptive superpixel tracker using multiple features[J]. Computers, Materials & Continua, 2019, 60(3): 1097-1108.
[28] 孙伟, 沈欣怡, 张小瑞, 等. 适应遥感船舶图像的轻量化旋转小目标检测网络[J]. 电子测量与仪器学报, 2025, 39(4): 122-131.
SUN W, SHEN X Y, ZHANG X R, et al. Lightweight rotating small target detection network adapted to remote sensing ship images[J]. Journal of Electronic Measurement and Instrumentation, 2025, 39(4): 122-131.
[29] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2): 336-359.
[30] FENG Y F, HUANG J G, DU S Y, et al. Hyper-YOLO: when visual object detection meets hypergraph computation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025, 47(4): 2388-2401. |