
Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (14): 20-36.DOI: 10.3778/j.issn.1002-8331.2409-0436
• Research Hotspots and Reviews • Previous Articles Next Articles
LIANG Yongqi, BAI Shuangcheng, ZHANG Zhiyi
Online:2025-07-15
Published:2025-07-15
梁永琦,白双成,张志一
LIANG Yongqi, BAI Shuangcheng, ZHANG Zhiyi. Advances in Neural Networks Combined with Hamiltonian Mechanics in Deep Learning[J]. Computer Engineering and Applications, 2025, 61(14): 20-36.
梁永琦, 白双成, 张志一. 深度学习中结合哈密顿力学的神经网络研究进展[J]. 计算机工程与应用, 2025, 61(14): 20-36.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2409-0436
| [1] KONDO N, AHMAD U, MONTA M, et al. Machine vision based quality evaluation of Iyokan orange fruit using neural networks[J]. Computers and Electronics in Agriculture, 2000, 29(1/2): 135-147. [2] KASNECI E, SESSLER K, KüCHEMANN S, et al. ChatGPT for good? on opportunities and challenges of large language models for education[J]. Learning and Individual Differences, 2023, 103: 102274. [3] TOGO R, WATANABE H, OGAWA T, et al. Deep convolutional neural network-based anomaly detection for organ classification in gastric X-ray examination[J]. Computers in Biology and Medicine, 2020, 123: 103903. [4] GRIGORESCU S, TRASNEA B, COCIAS T, et al. A survey of deep learning techniques for autonomous driving[J]. Journal of Field Robotics, 2020, 37(3): 362-386. [5] 杨倩茹, 郭峻氚. 基于ResNet与分离注意力机制的肺部超声图像分类系统设计[J]. 中国医疗设备, 2024, 39(10): 52-57. YANG Q R, GUO J C. Design of lung ultrasound image classification system based on ResNet with split attention mechanism[J]. China Medical Devices, 2024, 39(10): 52-57. [6] HINTON G, DENG L, YU D, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82-97. [7] WOO S, DEBNATH S, HU R H, et al. ConvNeXt V2: co-designing and scaling ConvNets with masked autoencoders[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 16133-16142. [8] LEWKOWYCZ A, ANDREASSEN A, DOHAN D, et al. Solving quantitative reasoning problems with language models[C]//Advances in Neural Information Processing Systems, 2022: 3843-3857. [9] RUPP M, TKATCHENKO A, MüLLER K R, et al. Fast and accurate modeling of molecular atomization energies with machine learning[J]. Physical Review Letters, 2012, 108(5): 058301. [10] HAN J Q, JENTZEN A, WEINAN E. Solving high-dimensional partial differential equations using deep learning[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115: 8505-8510. [11] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics informed deep learning (part I): data-driven solutions of nonlinear partial differential equations[J]. arXiv:1711.10561, 2017. [12] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics informed deep learning (part II): data-driven discovery of nonlinear partial differential equations[J]. arXiv:1711.10566, 2017. [13] WILLARD J, JIA X W, XU S M, et al. Integrating scientific knowledge with machine learning for engineering and environmental systems[J]. ACM Computing Surveys, 2023, 55(4): 1-37. [14] VON RUEDEN L, MAYER S, BECKH K, et al. Informed machine learning—a taxonomy and survey of integrating prior knowledge into learning systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(1): 614-633. [15] KARPATNE A, ATLURI G, FAGHMOUS J H, et al. Theory-guided data science: a new paradigm for scientific discovery from data[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(10): 2318-2331. [16] KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422-440. [17] DE PAUL ADOMBI A V, CHESNAUX R, BOUCHER M A. Review: theory-guided machine learning applied to hydrogeology: state of the art, opportunities and future challenges[J]. Hydrogeology Journal, 2021, 29(8): 2671-2683. [18] GOLDMAN N, FRIED L E, LINDSEY R K, et al. Enhancing the accuracy of density functional tight binding models through ChIMES many-body interaction potentials[J]. The Journal of Chemical Physics, 2023, 158(14): 144112. [19] HAN C D, GLAZ B, HAILE M, et al. Adaptable Hamiltonian neural networks[J]. Physical Review Research, 2021, 3(2): 023156. [20] SANCHEZ-GONZALEZ A, BAPST V, CRANMER K, et al. Hamiltonian graph networks with ODE integrators[J]. arXiv:1909.12790, 2019. [21] CHEN Z D, ZHANG J Y, ARJOVSKY M, et al. Symplectic recurrent neural networks[J]. arXiv:1909.13334, 2019. [22] CHOUDHARY A, LINDNER J F, HOLLIDAY E G, et al. Physics-enhanced neural networks learn order and chaos[J]. Physical Review E, 2020, 101(6): 062207. [23] VALENTI A, VAN NIEUWENBURG E, HUBER S, et al. Hamiltonian learning for quantum error correction[J]. Physical Review Research, 2019, 1(3): 033092. [24] DUTT A, PEDNAULT E, WU C W, et al. Active learning of quantum system Hamiltonians yields query advantage[J]. Physical Review Research, 2023, 5(3): 033060. [25] YANG Y L, WUNSCH D, YIN Y X. Hamiltonian-driven adaptive dynamic programming for continuous nonlinear dynamical systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(8): 1929-1940. [26] LETCHER A, BALDUZZI D, RACANIèRE S, et al. Differentiable game mechanics[J]. Journal of Machine Learning Research, 2019, 2084: 1-84. [27] MATSUBARA T, MIYATAKE Y, YAGUCHI T. Symplectic adjoint method for exact gradient of neural ODE with minimal memory[C]//Advances in Neural Information Processing Systems, 2021: 20772-20784. [28] Hamiltonian dynamical systems: a reprint selection[M]. [S.l.]: CRC Press, 2020. [29] CHEN Z J, FENG M Q, YAN J C, et al. Learning neural Hamiltonian dynamics: a methodological overview[J]. arXiv:2203.00128, 2022. [30] 祝爱卿, 金鹏展, 唐贻发. 基于辛格式的深度哈密尔顿神经网络[J]. 计算数学, 2020, 42(3): 370-384. ZHU A Q, JIN P Z, TANG Y F. Deep Hamiltonian neural networks based on symplectic integrators[J]. Mathematica Numerica Sinica, 2020, 42(3): 370-384. [31] OFFEN C, OBER-BL?BAUM S. Symplectic integration of learned Hamiltonian systems[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2022, 32(1): 013122. [32] FENG K. Difference schemes for hamiltonian formalism and symplectic geometry[J]. Journal of Computational mathematics, 1986, 4(3): 279. [33] KOCH O, LUBICH C. Dynamical low-rank approximation[J]. SIAM Journal on Matrix Analysis and Applications, 2007, 29(2): 434-454. [34] FENG K, QIN M Z. Symplectic geometric algorithms for hamiltonian systems[M]. Cham: Springer Berlin Heidelberg, 2010. [35] GIROLAMI M, CALDERHEAD B. Riemann manifold Langevin and Hamiltonian Monte Carlo methods[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2011, 73(2): 123-214. [36] CHANNELL P J, SCOVEL C. Symplectic integration of Hamiltonian systems[J]. Nonlinearity, 1990, 3(2): 231. [37] XIAOXUN G, HE L, NIANLONG Z, et al. General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian[J]. Nature Communications, 2023, 14(1): 2848. [38] SCHüTT K T, ARBABZADAH F, CHMIELA S, et al. Quantum-chemical insights from deep tensor neural networks[J]. Nature Communications, 2017, 8: 13890. [39] GREYDANUS S, DZAMBA M, YOSINSKI J. Hamiltonian neural networks[J]. arXiv:1906.01563, 2019. [40] MARIN J. Optimizing AI reasoning: a Hamiltonian dynamics approach to multi-hop question answering[J]. arXiv:2410. 04415, 2024. [41] 杜会芳, 王昊奋, 史英慧, 等. 知识图谱多跳问答推理研究进展、挑战与展望[J]. 大数据, 2021, 7(3): 60-79. DU H F, WANG H F, SHI Y H, et al. Progress, challenges and research trends of reasoning in multi-hop knowledge graph based question answering[J]. Big Data Research, 2021, 7(3): 60-79. [42] WERBOS P J. Neural networks and the human mind: new mathematics fits ancient insights[C]//Proceedings of 1992 IEEE International Conference on Systems, Man, and Cybernetics, 1992. [43] HINTON G. Deep learning—a technology with the potential to transform health care[J]. JAMA, 2018, 320(11): 1101-1102. [44] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [45] KHOMENKO V. Recurrent neural networks[M]. [S.l.]: John Wiley & Sons, Ltd, 2016. [46] GRAVES A. Long short-term memory[J]. Supervised Sequence Labelling with Recurrent Neural Networks, 2012(1): 37-45. [47] IMTIAZ HOSSAIN M R, SIAM M, SIGAL L, et al. Visual prompting for generalized few-shot segmentation: a multi-scale approach[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 23470-23480. [48] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems, 2014: 2672-2680. [49] VASWANI A. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017: 5998-6008. [50] HOWSE J, ABDALLAH C, HEILEMAN G. Gradient and Hamiltonian dynamics applied to learning in neural networks[C]//Advances in Neural Information Processing Systems, 1995: 274-280. [51] SEUNG H S, RICHARDSON T, LAGARIAS J, et al. Minimax and Hamiltonian dynamics of excitatory-inhibitory networks[C]//Advances in Neural Information Processing Systems, 1997: 329-335. [52] JIN P Z, ZHANG Z, ZHU A Q, et al. SympNets: intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems[J]. Neural Networks, 2020, 132: 166-179. [53] CITKO W, SIENKO W. Hamiltonian and Q-inspired neural network-based machine learning[J]. IEEE Access, 2020, 8: 220437-220449. [54] GALIMBERTI C L, FURIERI L, XU L, et al. Hamiltonian deep neural networks guaranteeing nonvanishing gradients by design[J]. IEEE Transactions on Automatic Control, 2023, 68(5): 3155-3162. [55] LEIMKUHLER B, REICH S. Simulating Hamiltonian dynamics[M]. Cambridge, UK: Cambridge University Press, 2005. [56] THALER D, DHULIPALA S L N, BAMER F, et al. Enhanced Hamiltonian Monte Carlo simulations using Hamiltonian neural networks[J]. PAMM, 2023, 22(1): e202200188. [57] DIERKES E, FLA?KAMP K. Learning mechanical systems by Hamiltonian neural networks[J]. PAMM, 2021, 21(1): e202100116. [58] MATTHEAKIS M, SONDAK D, DOGRA A S, et al. Hamiltonian neural networks for solving equations of motion[J]. Physical Review E, 2022, 105: 065305. [59] DAVID M, MéHATS F. Symplectic learning for Hamiltonian neural networks[J]. Journal of Computational Physics, 2023, 494: 112495. [60] SIENKO W, CITKO W. Hamiltonian neural networks based networks for learning[J]. InTech, 2009. DOI:10.5772/6549. [61] SOSANYA A, GREYDANUS S. Dissipative Hamiltonian neural networks: learning dissipative and conservative dynamics separately[J]. arXiv:2201.10085, 2022. [62] HELMHOLTZ H. über integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen[J]. Journal Für Die Reine und Angewandte Mathematik (Crelles Journal), 1858, 55: 25-55. [63] CHEN Y, MATSUBARA T, YAGUCHI T. Neural symplectic form: learning Hamiltonian equations on general coordinate systems[C]//Advances in Neural Information Processing Systems, 2021: 16659-16670. [64] ZHONG Y D, DEY B, CHAKRABORTY A. Symplectic ODE-net: learning Hamiltonian dynamics with control[J]. arXiv:1909.12077, 2019. [65] TOTH P, REZENDE D J, JAEGLE A, et al. Hamiltonian generative networks[J]. arXiv:1909.13789, 2019. [66] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80. [67] LI Z Y, YANG S W, SONG G J, et al. HamNet: conformation-guided molecular representation with Hamiltonian neural networks[J]. arXiv:2105.03688, 2021. [68] SAEMUNDSSON S, TERENIN A, HOFMANN K, et al. Variational integrator networks for physically structured embeddings[C]//Proceedings of the International Conference on Artificial Intelligence and Statistics, 2020: 3078-3087. [69] KHAN A, STORKEY A. Hamiltonian latent operators for content and motion disentanglement in image sequences[J]. arXiv:2112.01641, 2021. [70] TULYAKOV S, LIU M Y, YANG X D, et al. MoCoGAN: decomposing motion and content for video generation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 1526-1535. [71] ALLEN-BLANCHETTE C. Hamiltonian GAN[J]. arXiv:2308.11216, 2023. [72] CASANOVA E, DAVIS K, G?LGE E, et al. XTTS: a massively multilingual zero-shot text-to-speech model[J]. arXiv: 2406. 04904, 2024. [73] XIONG W, DROPPO J, HUANG X, et al. The microsoft 2016 conversational speech recognition system[C]//Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2017: 5255-5259. [74] ZOPPOLI R, SANGUINETI M, GNECCO G, et al. Neural approximations for optimal control and decision[M]. Cham: Springer International Publishing, 2020. [75] GALIMBERTI C L, XU L, TRECATE G F. A unified framework for Hamiltonian deep neural networks[C]//Proceedings of the 3rd Annual Conference on Learning for Dynamics and Control, 2021: 275-286. [76] ZHANG J, LEI Q, DHILLON I S. Stabilizing gradients for deep neural networks via efficient SVD parameterization[J]. arXiv:1803.09327, 2018. [77] WEINAN E. A proposal on machine learning via dynamical systems[J]. Communications in Mathematics and Statistics, 2017, 5(1): 1-11. [78] VO A D, NGUYEN Q P, OCK C Y. Semantic and syntactic analysis in learning representation based on a sentiment analysis model[J]. Applied Intelligence, 2020, 50(3): 663-680. [79] GALIMBERTI C, FURIERI L, XU L, et al. Non vanishing gradients for arbitrarily deep neural networks: a Hamiltonian system approach[C]//Proceedings of the Symbiosis of Deep Learning and Differential Equations, 2021. [80] GUO Y Q, CHENG D Z. Stabilization of time-varying Hamiltonian systems[J]. IEEE Transactions on Control Systems Technology, 2006, 14(5): 871-880. [81] FORBES J R. L2-gain and passivity techniques in nonlinear control, third edition [bookshelf][J]. IEEE Control Systems Magazine, 2017, 37(6): 75-76. [82] VIDYASAGAR M. Nonlinear systems analysis[M]. [S.l.]: Society for Industrial and Applied Mathematics, 2002. [83] HABER E, RUTHOTTO L. Stable architectures for deep neural networks[J]. Inverse Problems, 2018, 34(1): 014004. [84] CHANG B, CHEN M M, HABER E, et al. AntisymmetricRNN: a dynamical system view on recurrent neural networks[J]. arXiv:1902.09689, 2019. [85] CHANG B, MENG L L, HABER E, et al. Reversible architectures for arbitrarily deep residual neural networks[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018: 2811-2818. [86] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1106-1114. [87] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. [88] WANKHADE M, RAO A C S, KULKARNI C. A survey on sentiment analysis methods, applications, and challenges[J]. Artificial Intelligence Review, 2022, 55(7): 5731-5780. [89] SHIVAPRASAD T K, SHETTY J. Sentiment analysis of product reviews: a review[C]//Proceedings of the 2017 International Conference on Inventive Communication and Computational Technologies. Piscataway: IEEE, 2017: 298-301. [90] MOUTHAMI K, DEVI K N, BHASKARAN V M. Sentiment analysis and classification based on textual reviews[C]//Proceedings of the 2013 International Conference on Information Communication and Embedded Systems. Piscataway: IEEE, 2013: 271-276. [91] MOGHADDAM S. Beyond sentiment analysis: mining defects and improvements from customer feedback[C]//Advances in Information Retrieval. Cham: Springer International Publishing, 2015: 400-410. [92] RAY P, CHAKRABARTI A. A mixed approach of deep learning method and rule-based method to improve aspect level sentiment analysis[J]. Applied Computing and Informatics, 2022, 18(1/2): 163-178. [93] FEI G L, LIU B, HSU M, et al. A dictionary-based approach to identifying aspects implied by adjectives for opinion mining[C]//Proceedings of the 24th International Conference on Computational Linguistics, 2012: 309-318. [94] AGARWAL B, MITTAL N. Machine learning approach for sentiment analysis[M]. [S.l.]: Springer International Publishing, 2016: 21-45. [95] ZHAO H L, LIU Z H, YAO X M, et al. A machine learning-based sentiment analysis of online product reviews with a novel term weighting and feature selection approach[J]. Information Processing & Management, 2021, 58(5): 102656. [96] ONAN A. Sentiment analysis on product reviews based on weighted word embeddings and deep neural networks[J]. Concurrency and Computation: Practice and Experience, 2021, 33(23): e5909. [97] LU Y P, ZHONG A X, LI Q Z, et al. Beyond finite layer neural networks: bridging deep architectures and numerical differential equations[C]//Proceedings of the International Conference on Machine Learning, 2018: 3276-3285. [98] AJMEERA N, KAMAKSHI P. Hamiltonian deep neural network fostered sentiment analysis approach on product reviews[J]. Signal, Image and Video Processing, 2024, 18(4): 3483-3494. [99] ZHU S J, YU Z K. Self-guided filter for image denoising[J]. IET Image Processing, 2020, 14(11): 2561-2566. [100] ALSAYAT A. Improving sentiment analysis for social media applications using an ensemble deep learning language model[J]. Arabian Journal for Science and Engineering, 2022, 47(2): 2499-2511. |
| [1] | HAO Hefei, ZHANG Longhao, CUI Hongzhen, ZHU Xiaoyue, PENG Yunfeng, LI Xianghui. Review of Application of Deep Neural Networks in Human Pose Estimation [J]. Computer Engineering and Applications, 2025, 61(9): 41-60. |
| [2] | SHI Zhanglong, ZHOU Xi, WANG Zhen, MA Bo, YANG Yating. Event Argument Extraction via Multi-Task Enhanced Text Generation [J]. Computer Engineering and Applications, 2025, 61(9): 168-176. |
| [3] | CHEN Hong, YOU Yuzhu, JIN Haibo, WU Cong, ZOU Jiapeng. Fusion of Improved Sampling Technology and SRFCNN-BiLSTM Intrusion Detection Method [J]. Computer Engineering and Applications, 2025, 61(9): 315-324. |
| [4] | MENG Weichao, BIAN Chunjiang, NIE Hongbin. Method for Detecting Dim Small Infrared Targets with Low Signal-to-Noise Ratio in Complex Background [J]. Computer Engineering and Applications, 2025, 61(8): 183-193. |
| [5] | REN Haiyu, LIU Jianping, WANG Jian, GU Xunxun, CHEN Xi, ZHANG Yue, ZHAO Changxu. Research on Intelligent Question Answering System Based on Large Language Model [J]. Computer Engineering and Applications, 2025, 61(7): 1-24. |
| [6] | TIAN Kan, CAO Xinwen, ZHANG Haoran, XIAN Xingping, WU Tao, SONG Xiuli. Knowledge Graph Question Answering with Shared Encoding and Graph Convolution Networks [J]. Computer Engineering and Applications, 2025, 61(7): 233-244. |
| [7] | MA Yunyi, XU Ming, JIN Haibo. Multi-Channel Adaptive Feature Fusion for Urban Road Network Traffic Prediction [J]. Computer Engineering and Applications, 2025, 61(7): 334-341. |
| [8] | LIANG Chengwu , HU Wei, YANG Jie, JIANG Songqi, HOU Ning. Fusion of Spatio-Temporal Domain Knowledge and Data-Driven for Skeleton-Based Action Recognition [J]. Computer Engineering and Applications, 2025, 61(5): 165-176. |
| [9] | XIAO Yu, XIAO Jing, LIN Guijin, NI Rongsen, XIAN Jiarong, YUAN Jibao. Construction and Study of Explainable Logical Reasoning Dataset [J]. Computer Engineering and Applications, 2025, 61(4): 114-121. |
| [10] | JIANG Yuehan, CHEN Junjie, LI Hongjun. Review of Human Action Recognition Based on Skeletal Graph Neural Networks [J]. Computer Engineering and Applications, 2025, 61(3): 34-47. |
| [11] | LI Zehui, ZHANG Lin, SHAN Xianying. Review on Improvement and Application of 3D Convolutional Neural Networks [J]. Computer Engineering and Applications, 2025, 61(3): 48-61. |
| [12] | ZHAI Yunkai, LI Junke, LI Jinlin, QIAO Yan. Intelligent Triage of Teleconsultation Based on Multi-Feature Fusion [J]. Computer Engineering and Applications, 2025, 61(3): 326-335. |
| [13] | YAN Jiahe, LI Honghui, SUN Jing, LIU Jie, ZHANG Junwen, YANG Xiaorui, XU Yi. Review on Development of Spatio-Temporal Graph Neural Networks for Traffic Flow Prediction [J]. Computer Engineering and Applications, 2025, 61(22): 1-19. |
| [14] | XU Minchen, QU Dan, SI Nianwen, PENG Sisi, LIU Yunpeng. Multi-Dimensional and Multi-Agent Group Discussion Method for Fake News Detection [J]. Computer Engineering and Applications, 2025, 61(22): 183-195. |
| [15] | JU Zedong, CHENG Chunlei, YE Qing, PENG Lin, GONG Zhufan. Review of Research Progress in Chinese Grammar Error Correction Technology [J]. Computer Engineering and Applications, 2025, 61(20): 36-53. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||