
Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (8): 35-48.DOI: 10.3778/j.issn.1002-8331.2409-0362
• Research Hotspots and Reviews • Previous Articles Next Articles
ZHEN Tong, ZHANG Weizhen, LI Zhihui
Online:2025-04-15
Published:2025-04-15
甄彤,张威振,李智慧
ZHEN Tong, ZHANG Weizhen, LI Zhihui. Review of Classification Methods for Crop Structure in Remote Sensing Imagery[J]. Computer Engineering and Applications, 2025, 61(8): 35-48.
甄彤, 张威振, 李智慧. 遥感影像中种植作物结构分类方法综述[J]. 计算机工程与应用, 2025, 61(8): 35-48.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2409-0362
| [1] MACDONALD R B. A summary of the history of the development of automated remote sensing for agricultural applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 1984, 22(6): 473-482. [2] ZAMAN Q. Precision agriculture: evolution, insights and emerging trends[M]. Amsterdam: Elsevier, 2023: 71-83. [3] STEVEN M D, CLARK J A. Applications of remote sensing in agriculture[M]. Amsterdam: Elsevier, 2013: 377-402. [4] MULLA D J. Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps[J]. Biosystems Engineering, 2013, 114(4): 358-371. [5] LEONE A P, WRIGHT G G, CORVES C. The application of satellite remote sensing for soil studies in upland areas of Southern Italy[J]. International Journal of Remote Sensing, 1995, 16(6): 1087-1105. [6] SISHODIA R P, RAY R L, SINGH S K. Applications of remote sensing in precision agriculture: a review[J]. Remote Sensing, 2020, 12(19): 3136. [7] NELLIS M D, PRICE K P, RUNDQUIST D. Remote sensing of cropland agriculture[M]//The SAGE handbook of remote sensing, London: SAGE Publications, Inc, 2009: 368-380. [8] 董金玮, 吴文斌, 黄健熙, 等. 农业土地利用遥感信息提取的研究进展与展望[J]. 地球信息科学学报, 2020, 22(4): 772-783. DONG J W, WU W B, HUANG J X, et al. State of the art and perspective of agricultural land use remote sensing information extraction[J]. Journal of Geo-Information Science, 2020, 22(4): 772-783. [9] 兰玉彬, 王天伟, 陈盛德, 等. 农业人工智能技术: 现代农业科技的翅膀[J]. 华南农业大学学报, 2020, 41(6): 1-13. LAN Y B, WANG T W, CHEN S D, et al. Agricultural artificial intelligence technology: wings of modern agricultural science and technology[J]. Journal of South China Agricultural University, 2020, 41(6): 1-13. [10] YAO J X, WU J, XIAO C Z, et al. The classification method study of crops remote sensing with deep learning, machine learning, and google earth engine[J]. Remote Sensing, 2022, 14(12): 2758. [11] ZHANG D W, YING C Y, WU L, et al. Using time series sentinel images for object-oriented crop extraction of planting structure in the google earth engine[J]. Agronomy, 2023, 13(9): 2350. [12] LU T Y, WAN L H, WANG L. Fine crop classification in high resolution remote sensing based on deep learning[J]. Frontiers in Environmental Science, 2022, 10: 991173. [13] ACHAHBOUN C, CHIKHAOUI M, NAIMI M, et al. Crops classification using machine learning and google earth engine[C]//Proceedings of the 2023 14th International Conference on Intelligent Systems: Theories and Applications. Piscataway: IEEE, 2023: 1-8. [14] LIU P, CHEN X. Intercropping classification from GF-1 and GF-2 satellite imagery using a rotation forest based on an SVM[J]. ISPRS International Journal of Geo-Information, 2019, 8(2): 86. [15] TARIQ A, YAN J G, GAGNON A S, et al. Mapping of cropland, cropping patterns and crop types by combining optical remote sensing images with decision tree classifier and random forest[J]. Geo-spatial Information Science, 2023, 26(3): 302-320. [16] TUFAIL R, AHMAD A, JAVED M A, et al. A machine learning approach for accurate crop type mapping using combined SAR and optical time series data[J]. Advances in Space Research, 2022, 69(1): 331-346. [17] HAMADA M A, KANAT Y, et al. Multi-spectral image segmentation based on the K-means clustering[J]. International Journal of Innovative Technology and Exploring Engineering, 2019, 9(2): 1016-1019. [18] HE Z P, XIA K W, ZHANG J N, et al. An enhanced semi-supervised support vector machine algorithm for spectral-spatial hyperspectral image classification[J]. Pattern Recognition and Image Analysis, 2024, 34(1): 199-211. [19] XIAO X Y, JIANG L L, LIU Y Q, et al. Limited-samples-based crop classification using a time-weighted dynamic time warping method, sentinel-1 imagery, and google earth engine[J]. Remote Sensing, 2023, 15(4): 1112. [20] MENG M M, ZHANG K X, HUANG Y B, et al. Crop classification based on G-CNN using multi-scale remote sensing images[J]. Remote Sensing Letters, 2024, 15(9): 941-950. [21] LI H P, ZHANG C, ZHANG Y, et al. A Scale Sequence Object-based Convolutional Neural Network (SS-OCNN) for crop classification from fine spatial resolution remotely sensed imagery[J]. International Journal of Digital Earth, 2021, 14(11): 1528-1546. [22] MAZZIA V, KHALIQ A, CHIABERGE M. Improvement in land cover and crop classification based on temporal features learning from sentinel-2 data using recurrent-convolutional neural network (R-CNN)[J]. Applied Sciences, 2020, 10(1): 238. [23] CHAMUNDEESWARI G, SRINIVASAN S, BHARATHI S, et al. Optimal deep convolutional neural network based crop classification model on multispectral remote sensing images[J]. Microprocessors and Microsystems, 2022, 94: 104626. [24] WANG Y M, FENG L W, ZHANG Z, et al. An unsupervised domain adaptation deep learning method for spatial and temporal transferable crop type mapping using Sentinel-2 imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 199: 102-117. [25] GOYAL P, PATNAIK S, MITRA A, et al. SepHRNet: generating high-resolution crop maps from remote sensing imagery using HRNet with separable convolution[J]. arXiv:2307.05700, 2023. [26] AYUSHI, BUTTAR P K. Satellite imagery analysis for crop type segmentation using U-Net architecture[J]. Procedia Computer Science, 2024, 235: 3418-3427. [27] MU Y, NI R W, ZHANG C, et al. A lightweight model of VGG-16 for remote sensing image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 6916-6922. [28] AJAYI O G, IWENDI E, ADETUNJI O O. Optimizing crop classification in precision agriculture using AlexNet and high resolution UAV imagery[J]. Technology in Agronomy, 2024, 4(1): e011. [29] BHAMARE D J, PUDI R, KRISHNA G R. Sine tangent search algorithm enabled LeNet for cotton crop classification using satellite image[J]. Multiagent and Grid Systems, 2024, 19(4): 337-362. [30] KAUR S, MADAAN S. A hybrid UNet based approach for crop classification using Sentinel-1B synthetic aperture radar images[J]. Multimedia Tools and Applications, 2025, 84(8): 4223-4252. [31] QIN X L, SU X, ZHANG L P. SITSMamba for crop classification based on satellite image time series[J]. arXiv:2409. 09673, 2024. [32] THAMARAIKANNAN N, MANJU S. A novel densenet-324 densely connected convolution neural network for medical crop classification using remote sensing hyperspectral satellite images[J]. International Journal on Recent and Innovation Trends in Computing and Communication, 2023, 11(8S): 628-638. [33] REU? F, GREIMEISTER-PFEIL I, VREUGDENHIL M, et al. Comparison of long short-term memory networks and random forest for sentinel-1 time series based large scale crop classification[J]. Remote Sensing, 2021, 13(24): 5000. [34] KWAK G P. Two-stage deep learning model with LSTM-based autoencoder and CNN for crop classification using multi-temporal remote sensing images[J]. Korean Journal of Remote Sensing, 2021, 37(4): 719-731. [35] SAGANA C, MANJULA DEVI R, THANGATAMILAN M, et al. Crop classification based on multispectral and multitemporal images using CNN and GRU[M]//Decision Intelligence Solutions. Singapore: Springer Nature Singapore, 2023: 125-135. [36] LI J T, SHEN Y L, YANG C. An adversarial generative network for crop classification from remote sensing timeseries images[J]. Remote Sensing, 2021, 13(1): 65. [37] REEDHA R, DERICQUEBOURG E, CANALS R, et al. Transformer neural network for weed and crop classification of high resolution UAV images[J]. Remote Sensing, 2022, 14(3): 592. [38] LUO C, LI H, ZHANG J, et al. OBViT: a high-resolution remote sensing crop classification model combining OBIA and vision transformer[C]//Proceedings of the 2023 11th International Conference on Agro-Geoinformatics (Agro-Geoinformatics). Piscataway: IEEE, 2023: 1-6. [39] RAMATHILAGAM A B, NATARAJAN S, KUMAR A. TransCropNet: a multichannel transformer with feature-level fusion for crop classification in agricultural smallholdings using Sentinel images[J]. Journal of Applied Remote Sensing, 2023, 17(2): 024501. [40] WANG H, CHEN X Z, ZHANG T X, et al. CCTNet: coupled CNN and transformer network for crop segmentation of remote sensing images[J]. Remote Sensing, 2022, 14(9): 1956. [41] XIANG J J, LIU J, CHEN D, et al. CTFuseNet: a multi-scale CNN-transformer feature fused network for crop type segmentation on UAV remote sensing imagery[J]. Remote Sensing, 2023, 15(4): 1151. [42] LI H Y, BIE Y H, WANG Y J. AgriST-Trans: a self-supervised Transformer pre-trained model for crop classification based on time-series remote sensing[C]//Proceedings of the 2024 12th International Conference on Agro-Geoinformatics. Piscataway: IEEE, 2024: 1-6. [43] NIU B W, FENG Q L, CHEN B A, et al. HSI-TransUNet: a transformer based semantic segmentation model for crop mapping from UAV hyperspectral imagery[J]. Computers and Electronics in Agriculture, 2022, 201: 107297. [44] YANG S T, GU L J, LI X F, et al. Crop classification method based on optimal feature selection and hybrid CNN-RF networks for multi-temporal remote sensing imagery[J]. Remote Sensing, 2020, 12(19): 3119. [45] SHER M, MINALLAH N, FRNDA J, et al. Elevating crop classification performance through CNN-GRU feature fusion[J]. IEEE Access, 2024, 12: 141013-141025. [46] LI Z T, CHEN G K, ZHANG T X. A CNN-transformer hybrid approach for crop classification using multitemporal multisensor images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 847-858. [47] LA ROSA L E C, OLIVEIRA D A B, FEITOSA R Q. End-to-end CNN-CRFs for multi-date crop classification using multitemporal remote sensing image sequences[C]//Proceedings of the CIKM Workshops, 2021. [48] 杨蜀秦, 宋志双, 尹瀚平, 等. 基于深度语义分割的无人机多光谱遥感作物分类方法[J]. 农业机械学报, 2021, 52(3): 185-192. YANG S Q, SONG Z S, YIN H P, et al. Crop classification method of UVA multispectral remote sensing based on deep semantic segmentation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(3): 185-192. [49] CHAKRAVARTY S, PAIKARAY B K, MISHRA R, et al. Hyperspectral image classification using spectral angle mapper[C]//Proceedings of the 2021 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering. Piscataway: IEEE, 2021: 87-90. [50] LU D, BATISTELLA M, MORAN E, et al. Application of spectral mixture analysis to Amazonian land-use and land-cover classification[J]. International Journal of Remote Sensing, 2004, 25(23): 5345-5358. [51] CHAUHAN H J, MOHAN B K. Effectiveness of SID as spectral similarity measure to develop crop spectra from hyperspectral image[J]. Journal of the Indian Society of Remote Sensing, 2018, 46(11): 1853-1862. [52] XUE H Y, XU X G, ZHU Q Z, et al. Object-oriented crop classification using time series sentinel images from google earth engine[J]. Remote Sensing, 2023, 15(5): 1353. [53] BHANDARI A K, KUMAR A, SINGH G K. Improved feature extraction scheme for satellite images using NDVI and NDWI technique based on DWT and SVD[J]. Arabian Journal of Geosciences, 2015, 8(9): 6949-6966. [54] HENNESSY A, CLARKE K, LEWIS M. Hyperspectral classification of plants: a review of waveband selection generalisability[J]. Remote Sensing, 2020, 12(1): 113. [55] ZHANG J C, HE Y H, YUAN L, et al. Machine learning-based spectral library for crop classification and status monitoring[J]. Agronomy, 2019, 9(9): 496. [56] MAOLAN K, RUSULI Y, ZHANG X H, et al. Sentinel-2 image based smallholder crops classification and accuracy assessment by UAV data[J]. Geocarto International, 2024, 39(1): 2361733. [57] HU Q, WU W B, SONG Q, et al. How do temporal and spectral features matter in crop classification in Heilongjiang Province, China?[J]. Journal of Integrative Agriculture, 2017, 16(2): 324-336. [58] ZHANG H Y, KANG J Z, XU X, et al. Accessing the temporal and spectral features in crop type mapping using multi-temporal sentinel-2 imagery: a case study of Yi’an County, Heilongjiang Province, China[J]. Computers and Electronics in Agriculture, 2020, 176: 105618. [59] ALI I, MUSHTAQ Z, ARIF S, et al. Hyperspectral images-based crop classification scheme for agricultural remote sensing[J]. Computer Systems Science and Engineering, 2023, 46(1): 303-319. [60] DHUMAL R K, VIBHUTE A D, et al. Advances in classification of crops using remote sensing data[J]. International Journal of Advanced Remote Sensing and GIS, 2015, 4(1): 1410-1418. [61] RESHMA S, VENI S, GEORGE J E. Hyperspectral crop classification using fusion of spectral, spatial features and vegetation indices: approach to the big data challenge[C]//Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics. Piscataway: IEEE, 2017: 380-386. [62] IQBAL N, MUMTAZ R, SHAFI U, et al. Gray level co-occurrence matrix (GLCM) texture based crop classification using low altitude remote sensing platforms[J]. PeerJ Computer Science, 2021, 7: e536. [63] SHINDE A A, SHRIVASTAVA M. Using local binary pattern variance for land classification and crop identification[J]. International Journal of Advanced Computer Research (IJACR), 2012, 2(4): 56-61. [64] ELNEMR H A. Feature selection for texture-based plant leaves classification[C]//Proceedings of the 2017 Intl Conf on Advanced Control Circuits Systems (ACCS) Systems & 2017 Intl Conf on New Paradigms in Electronics & Information Technology. Piscataway: IEEE, 2017: 91-97. [65] COPE J S, REMAGNINO P, BARMAN S, et al. Plant texture classification using gabor co-occurrences[C]//Advances in Visual Computing, 2010: 669-677. . [66] PURI D, KUMAR A, VIRMANI J, et al. Classification of leaves of medicinal plants using laws’ texture features[J]. International Journal of Information Technology, 2022, 14(2): 931-942. [67] LIU J, ZHANG S, DENG S. A method of plant classification based on wavelet transforms and support vector machines[C]//Proceedings of the 5th International Conference on Intelligent Computing. Berlin, Heidelberg: Springer, 2009: 253-260. . [68] MALKANI P, SAGAR A, ASHA K R, et al. An overview on crop-weed discrimination based on digital image processing using textural[J]. IJCS, 2019, 7(6): 2514-2520. [69] KWAK G H, PARK N W. Impact of texture information on crop classification with machine learning and UAV images[J]. Applied Sciences, 2019, 9(4): 643. [70] 王镕, 赵红莉, 蒋云钟, 等. 月尺度农作物提取中GF-1 WFV纹理特征的应用及分析[J]. 自然资源遥感, 2021, 33(3): 72-79. WANG R, ZHAO H L, JIANG Y Z, et al. Application and analyses of texture features based on GF-1 WFV images in monthly information extraction of crops[J]. Remote Sensing for Natural Resources, 2021, 33(3): 72-79. [71] SARABIA R, AQUINO A, PONCE J M, et al. Automated identification of crop tree crowns from UAV multispectral imagery by means of morphological image analysis[J]. Remote Sensing, 2020, 12(5): 748. [72] 帅爽, 张志, 张天, 等. 特征优化结合随机森林算法的干旱区植被高光谱遥感分类方法[J]. 农业工程学报, 2023, 39(9): 287-293. SHUAI S, ZHANG Z, ZHANG T, et al. Hyperspectral image classification method for dryland vegetation by combining feature optimization and random forest algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(9): 287-293. [73] 杜保佳, 张晶, 王宗明, 等. 应用Sentinel-2A NDVI时间序列和面向对象决策树方法的农作物分类[J]. 地球信息科学学报, 2019, 21(5): 740-751. DU B J, ZHANG J, WANG Z M, et al. Crop mapping based on sentinel-2A NDVI time series using object-oriented classification and decision tree model[J]. Journal of Geo-Information Science, 2019, 21(5): 740-751. [74] BARGIEL D. A new method for crop classification combining time series of radar images and crop phenology information[J]. Remote Sensing of Environment, 2017, 198: 369-383. [75] ZHOU Y N, LUO J C, FENG L, et al. Long-short-term-memory-based crop classification using high-resolution optical images and multi-temporal SAR data[J]. GIScience & Remote Sensing, 2019, 56(8): 1170-1191. [76] LI R, ZHOU M Q, ZHANG D, et al. A survey of multi-source image fusion[J]. Multimedia Tools and Applications, 2024, 83(6): 18573-18605. [77] ZHANG X Y, LIN J J. Scalable data fusion via a scale-based hierarchical framework: adapting to multi-source and multi-scale scenarios[J]. Information Fusion, 2025, 114: 102694. [78] DONG J, ZHUANG D F, HUANG Y H, et al. Advances in multi-sensor data fusion: algorithms and applications[J]. Sensors, 2009, 9(10): 7771-7784. [79] WANG L, ZHAO X, ENGEL B, et al. A review of crop recognition methods based on multi-source remote sensing data[M]. Cham: Springer International Publishing, 2022: 571-585. [80] LIANG Y J, WEI L F, LU Q K. Multiple feature fusion for fine classification of crops in UAV hyperspectral imagery[C]//Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Piscataway: IEEE, 2021: 5059-5062. [81] SREEDHAR R, VARSHNEY A, DHANYA M. Sugarcane crop classification using time series analysis of optical and SAR sentinel images: a deep learning approach[J]. Remote Sensing Letters, 2022, 13(8): 812-821. [82] ZHANG X, JIANG H Z, XU N, et al. MsIFT: multi-source image fusion transformer[J]. Remote Sensing, 2022, 14(16): 4062. [83] LIU N T, ZHAO Q S, WILLIAMS R, et al. Enhanced crop classification through integrated optical and SAR data: a deep learning approach for multi-source image fusion[J]. International Journal of Remote Sensing, 2024, 45(19/20): 7605-7633. [84] BADILLO S, BANFAI B, BIRZELE F, et al. An introduction to machine learning[J]. Clinical Pharmacology and Therapeutics, 2020, 107(4): 871-885. [85] LINDA THERES S B. Evaluation of machine learning classifiers for crop classification—a case study of veppanthattai taluk, perambalur district[J]. International Journal of Current Microbiology and Applied Sciences, 2022, 11(5): 115-124. [86] OK A O, AKAR O, GUNGOR O. Evaluation of random forest method for agricultural crop classification[J]. European Journal of Remote Sensing, 2012, 45(1): 421-432. [87] YANG C C, PRASHER S O, ENRIGHT P, et al. Application of decision tree technology for image classification using remote sensing data[J]. Agricultural Systems, 2003, 76(3): 1101-1117. [88] MA Z Y, LI W, WARNER T A, et al. A framework combined stacking ensemble algorithm to classify crop in complex agricultural landscape of high altitude regions with Gaofen-6 imagery and elevation data[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 122: 103386. [89] 徐丰, 王海鹏, 金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6(2): 136-148. XU F, WANG H P, JIN Y Q. Deep learning as applied in SAR target recognition and terrain classification[J]. Journal of Radars, 2017, 6(2): 136-148. [90] SEYDI S T, AMANI M, GHORBANIAN A. A dual attention convolutional neural network for crop classification using time-series sentinel-2 imagery[J]. Remote Sensing, 2022, 14(3): 498. [91] 彭斌, 白静, 李文静, 等. 面向图像分类的视觉Transformer研究进展[J]. 计算机科学与探索, 2024, 18(2): 320-344. PENG B, BAI J, LI W J, et al. Survey on visual transformer for image classification[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 320-344. [92] 李政威, 汪西莉, 艾美. 结合原型的两阶段遥感图像无监督域适应分割模型[J]. 计算机科学与探索, 2024, 18(8): 2091-2108. LI Z W, WANG X L, AI M. Prototype-combined two-stage unsupervised domain adaptation segmentation model for remote sensing images[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2091-2108. [93] YANG R, QI Y, ZHANG H, et al. A study on the object-based high-resolution remote sensing image classification of crop planting structures in the Loess Plateau of eastern Gansu Province[J]. Remote Sensing, 2024, 16(13): 2479. [94] KAVITHA A V, SRIKRISHNA A, SATYANARAYANA C. Crop image classification using spherical contact distributions from remote sensing images[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(3): 534-545. [95] KUSSUL N, LAVRENIUK M, SKAKUN S, et al. Deep learning classification of land cover and crop types using remote sensing data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 778-782. [96] BOUGUETTAYA A, ZARZOUR H, KECHIDA A, et al. Deep learning techniques to classify agricultural crops through UAV imagery: a review[J]. Neural Computing & Applications, 2022, 34(12): 9511-9536. [97] 郭金, 宋廷强, 孙媛媛, 等. 改进Deeplabv3+的双注意力融合作物分类方法[J]. 计算机工程与应用, 2024, 60(8): 110-120. GUO J, SONG T Q, SUN Y Y, et al. Improved Deeplabv3+ crop classification method based on double attention fusion[J]. Computer Engineering and Applications, 2024, 60(8): 110-120. [98] LI Q J, TIAN J, TIAN Q J. Deep learning application for crop classification via multi-temporal remote sensing images[J]. Agriculture, 2023, 13(4): 906. [99] ALMASOUD A S, MENGASH H A, SAEED M K, et al. Remote sensing imagery data analysis using marine predators algorithm with deep learning for food crop classification[J]. Biomimetics, 2023, 8(7): 535. [100] JADHAV J K, SINGH R P. Automatic semantic segmentation and classification of remote sensing data for agriculture[J]. Mathematical Models in Engineering, 2018, 4(2): 112-137. [101] DHUMAL R K, RAJENDRA Y D, KALE K, et al. Classification of crops from remotely sensed images: anoverview[J]. International Journal of Engineering Research and Applications, 2013, 3(3): 758-761. [102] KARTHIKEYAN B, MOHAN V, CHAMUNDEESWARI G, et al. Deep learning driven crop classification and chlorophyll content estimation for the nexus food higher productions using multi-spectral remote sensing images[J]. Global NEST: the International Journal, 2023, 25(3): 164-173. [103] WANG H B, CHANG W Q, YAO Y, et al. Cropformer: a new generalized deep learning classification approach for multi-scenario crop classification[J]. Frontiers in Plant Science, 2023, 14: 1130659. [104] JI S P, ZHANG C, XU A J, et al. 3D convolutional neural networks for crop classification with multi-temporal remote sensing images[J]. Remote Sensing, 2018, 10(1): 75. [105] WANG L J, WANG J Y, LIU Z Z, et al. Evaluation of a deep-learning model for multispectral remote sensing of land use and crop classification[J]. The Crop Journal, 2022, 10(5): 1435-1451. [106] TEIXEIRA I, MORAIS R, SOUSA J J, et al. Deep learning models for the classification of crops in aerial imagery: a review[J]. Agriculture, 2023, 13(5): 965. [107] LI W D, YU Y B, MENG F Q, et al. A image fusion and U-Net approach to improving crop planting structure multi-category classification in irrigated area[J]. Journal of Intelligent & Fuzzy Systems, 2023, 45(1): 185-198. [108] LU T Y, GAO M X, WANG L. Crop classification in high-resolution remote sensing images based on multi-scale feature fusion semantic segmentation model[J]. Frontiers in Plant Science, 2023, 14: 1196634. [109] QI Y, BITELLI G, MANDANICI E, et al. Application of deep learning crop classification model based on multispectral and sar satellite imagery[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2023, 48: 1515-1521. [110] SHUMILO L, OKHRIMENKO A, KUSSUL N, et al. Generative adversarial network augmentation for solving the training data imbalance problem in crop classification[J]. Remote Sensing Letters, 2023, 14(11): 1129-1138. [111] RAMZAN Z, SHAHZAD ASIF H M, SHAHBAZ M. Multimodal crop cover identification using deep learning and remote sensing[J]. Multimedia Tools and Applications, 2024, 83(11): 33141-33159. [112] HASHEMI-BENI L, GEBREHIWOT A. Deep learning for remote sensing image classification for agriculture applications[J]. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020, 4443: 51-54. [113] WU L, TIAN J F, LIU Y L, et al. Multi-objective planting structure optimisation in an irrigation area using a grey wolf optimisation algorithm[J]. Water, 2024, 16(16): 2297. [114] GADIRAJU K K, VATSAVAI R R. Remote sensing based crop type classification via deep transfer learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 4699-4712. [115] AGILANDEESWARI L, PRABUKUMAR M, RADHESYAM V, et al. Crop classification for agricultural applications in hyperspectral remote sensing images[J]. Applied Sciences, 2022, 12(3): 1670. [116] KWAK G H, PARK N W. Unsupervised domain adaptation with adversarial self-training for crop classification using remote sensing images[J]. Remote Sensing, 2022, 14(18): 4639. [117] BHOSLE K, MUSANDE V. Evaluation of deep learning CNN model for land use land cover classification and crop identification using hyperspectral remote sensing images[J]. Journal of the Indian Society of Remote Sensing, 2019, 47(11): 1949-1958. [118] MURMU S, BISWAS S. Application of fuzzy logic and neural network in crop classification: a review[J]. Aquatic Procedia, 2015, 4: 1203-1210. [119] 刘梦, 王卷乐, 李凯, 等. 2015—2023年中俄黑龙江跨境流域农作物精细分类数据集[J]. 农业大数据学报, 2025, 7(1): 1-9. LIU M, WANG J L, LI K, et al. Fine classification dataset of crops in the transboundary basin of the Heilongjiang river between Russia and China, 2015—2023[J]. Journal of Agricultural Big Data, 2025, 7(1): 1-9. [120] ZHU B X. 30?m resolution crop classification dataset in Northeast China (2020)[DS/OL]. V1. Science Data Bank[2024?11?09]. https://doi.org/10.57760/sciencedb.IGA. 00949.DOI:10.57760/sciencedb.IGA.00949. [121] ZHU B X. 30?m resolution crop classification dataset in Northeast China (2021)[DS/OL]. V1. Science Data Bank[2024?11?09]. https://doi.org/10.57760/sciencedb.IGA. 00950.DOI:10.57760/sciencedb.IGA.00950. [122] GUO J. Multi-source and multi-temporal remote sensing data set of economic crop planting structure in Yangling Agricultural Demonstration Area[DS/OL]. V1. Science Data Bank[2024?11?09]. https://doi.org/10.11922/sciencedb.j00001.00371.DOI:10.11922/sciencedb.j00001.00371. |
| [1] | LI Shuhui, CAI Wei, WANG Xin, GAO Weijie, DI Xingyu. Review of Infrared and Visible Image Fusion Methods in Deep Learning Frameworks [J]. Computer Engineering and Applications, 2025, 61(9): 25-40. |
| [2] | CHEN Zhuo, LIU Dongqing, TANG Pinghua, HUANG Yan, ZHANG Wenxia, JIA Yan, CHENG Haifeng. Research Progress on Physical Adversarial Attacks for Target Detection [J]. Computer Engineering and Applications, 2025, 61(9): 80-101. |
| [3] | WANG Jing, LI Yunxia. Research on Stock Return Forecast by NS-FEDformer Model [J]. Computer Engineering and Applications, 2025, 61(9): 334-342. |
| [4] | ZHOU Jiani, LIU Chunyu, LIU Jiapeng. Stock Price Trend Prediction Model Integrating Channel and Multi-Head Attention Mechanisms [J]. Computer Engineering and Applications, 2025, 61(8): 324-338. |
| [5] | ZHAO Junyang, LYU Shenhua, LI Yongxu, ZHU Huixin, ZHANG Kefan. Review of Development of Visual-Inertial Joint Calibration [J]. Computer Engineering and Applications, 2025, 61(8): 1-16. |
| [6] | LI Tongwei, QIU Dawei, LIU Jing, LU Yinghang. Review of Human Behavior Recognition Based on RGB and Skeletal Data [J]. Computer Engineering and Applications, 2025, 61(8): 62-82. |
| [7] | WEN Hao, YANG Yang. Research on Clinical Short Text Classification by Integrating ERNIE with Knowledge Enhancement [J]. Computer Engineering and Applications, 2025, 61(8): 108-116. |
| [8] | WANG Yan, LU Pengyi, TA Xue. Normalized Convolutional Image Dehazing Network Combined with Feature Fusion Attention [J]. Computer Engineering and Applications, 2025, 61(8): 226-238. |
| [9] | SHI Xin, WANG Haoze, JI Yi, MA Junyan. Multimodal Vehicle Trajectory Prediction Method with Fusion of Spatio-Temporal Features [J]. Computer Engineering and Applications, 2025, 61(7): 325-333. |
| [10] | XING Suxia, LI Kexian, FANG Junze, GUO Zheng, ZHAO Shihang. Survey of Medical Image Segmentation in Deep Learning [J]. Computer Engineering and Applications, 2025, 61(7): 25-41. |
| [11] | CHEN Yu, QUAN Jichuan. Camouflaged Object Detection:Developments and Challenges [J]. Computer Engineering and Applications, 2025, 61(7): 42-60. |
| [12] | ZHAI Huiying, HAO Han, LI Junli, ZHAN Zhifeng. Review of Research on Unmanned Aerial Vehicle Autonomous Inspection Algorithms for Railway Facilities [J]. Computer Engineering and Applications, 2025, 61(7): 61-80. |
| [13] | DMU-YOLO:Multi-Class Abnormal Behavior Detection Algorithm Based on Air-Borne Vision. DMU-YOLO:Multi-Class Abnormal Behavior Detection Algorithm Based on Air-Borne Vision [J]. Computer Engineering and Applications, 2025, 61(7): 128-140. |
| [14] | LIU Hongyu, GAO Jian. Research on Detection and Classification Model of Illegal and Criminal Android Malware Integrating CBAM [J]. Computer Engineering and Applications, 2025, 61(6): 317-327. |
| [15] | HUANG Deqi, HUANG Haifeng, HUANG Deyi, LIU Zhenhang. Review of Application of BEV Perceptual Learning in Autonomous Driving [J]. Computer Engineering and Applications, 2025, 61(6): 1-21. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||