[1] GLENNAN T, LECKIE C, ERFANI S M. Improved classification of known and unknown network traffic flows using semi-supervised machine learning[C]//Proceedings of the Australasian Conference on Information Security and Privacy, 2016: 493-501.
[2] ZHANG J, CHEN C, XIANG Y, et al. Internet traffic classification by aggregating correlated Naive Bayes predictions[J]. IEEE Transactions on Information Forensics and Security, 2012, 8(1): 5-15.
[3] 陈子涵, 程光, 徐子恒, 等. 互联网加密流量检测、分类与识别研究综述[J]. 计算机学报, 2023, 46(5): 1060-1085.
CHEN Z H, CHENG G, XU Z H, et al. A survey on internet encrypted traffic detection,classification and ldentification[J]. Chinese Journal of Computers, 2023, 46(5): 1060-1085.
[4] YOON S H, PARK J W, PARK J S, et al. Internet application traffic classification using fixed IP-port[C]//Proceedings of the Management Enabling the Future Internet for Changing Business and New Computing Services: 12th Asia-Pacific Network Operations and Management Symposium, 2009: 21-30.
[5] KARAGIANNIS T, PAPAGIANNAKI K, FALOUTSOS M. BLINC: multilevel traffic classification in the dark[C]//Proceedings of the 2005 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, 2005: 229-240.
[6] CASCARANO N, CIMINIERA L, RISSO F. Improving cost and accuracy of DPI traffic classifiers[C]//Proceedings of the 2010 ACM Symposium on Applied Computing, 2010: 641-646.
[7] MOORE A W, ZUEV D. Internet traffic classification using Bayesian analysis techniques[C]//Proceedings of the ACM International Conference on Measurement and Modeling of Computer Systems, 2005: 50-60.
[8] LI J, ZHANG S Y, LU Y Q, et al. Internet traffic classification using machine learning[C]//Proceedings of the 2nd International Conference on Communications and Networking in China, 2007: 239-243.
[9] 周剑峰, 阳爱民, 刘吉财. 基于改进的C4.5算法的网络流量分类方法[J]. 计算机工程与应用, 2012, 48(5): 71-74.
ZHOU J F, YANG A M, LIU J C. Traffic classification approach based on improved C4.5 algorithm[J]. Computer Engineering and Applications, 2012, 48(5): 71-74.
[10] ERMAN J, ARLITT M, MAHANTI A. Traffic classification using clustering algorithms[C]//Proceedings of the SIGCOMM Workshop on Mining Network Data, 2006: 281-286.
[11] ZANDER S, NGUYEN T, ARMITAGE G. Automated traffic classification and application identification using machine learning[C]//Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary, 2005: 250-257.
[12] FINAMORE A, MELLIA M, MEO M. Mining unclassified traffic using automatic clustering techniques[C]//Proceedings of the 2006 SIGCOMM Workshop on Mining Network Data, 2011: 150-163.
[13] ERMAN J, MAHANTI A, ARLITT M, et al. Offline/realtime traffic classification using semi-supervised learning[J]. Performance Evaluation, 2007, 64(9/10/11/12): 1194-1213.
[14] NOORBEHBAHANI F, MANSOORI S. A new semi-supervised method for network traffic classification based on X-means clustering and label propagation[C]//Proceedings of the 2018 8th International Conference on Computer and Knowledge Engineering, 2018: 120-125.
[15] ZHOU Z H, LI M. Tri-training: exploiting unlabeled data using three classifiers[J]. IEEE Transactions on knowledge and Data Engineering, 2005, 17(11): 1529-1541.
[16] ZHAO S, ZHANG Y, CHANG P. Network traffic classification using tri-training based on statistical flow characteristics[C]//Proceedings of the 2017 IEEE Trustcom/BigDataSE/ICESS, 2017: 323-330.
[17] 张永, 陈蓉蓉, 张晶. 基于交叉熵的安全Tri-training算法[J]. 计算机研究与发展, 2021, 58(1): 60-69.
ZHANG Y, CHEN R R, ZHANG J. Safe Tri-training algorithm based on cross entropy[J]. Journal of Computer Research and Development, 2021, 58(1): 60-69.
[18] ZHAO J, LI S, WU R, et al. Tri-training algorithm based on cross entropy and K-nearest neighbors for network intrusion detection[J]. KSII Transactions on Internet & Information Systems, 2022, 16(12): 3889-3903.
[19] ROBNIK-?IKONJA M, KONONENKO I. Theoretical and empirical analysis of ReliefF and RReliefF[J]. Machine Learning, 2003, 53: 23-69.
[20] 李道全, 李腾, 李玉秀. 基于自适应特征选择与KNN的网络流量分类研究[J]. 计算机工程与应用, 2023, 59(12): 270-277.
LI D Q, LI T, LI Y X. Research on network traffic classification based on adaptive feature selection and KNN[J]. Computer Engineering and Applications, 2023, 59(12): 270-277.
[21] HALL M A. Correlation-based feature selection of discrete and numeric class machine learning[C]//Proceedings of the 17th International Conference on Machine Learning, 2000: 359-366.
[22] JIA L H, GUO L Z, ZHOU Z, et al. LAMDA-SSL: semi-supervised learning in Python[J]. arXiv:2208.04610, 2022.
[23] 任正雄, 韩华, 崔晓钰, 等. 基于Tri-Training的制冷系统半监督故障诊断[J]. 制冷学报, 2022, 43(4): 129-136.
REN Z X, HAN H, CUI X Y, et al. Semi-supervised fault diagnosis of refrigeration system based on Tri-Training[J]. Journal of Refrigeration, 2022, 43(4): 129-136.
[24] 胡云青, 邱清盈, 余秀, 等. 基于改进三体训练法的半监督专利文本分类方法[J]. 浙江大学学报 (工学版), 2020, 54(2): 331-339.
HU Y Q, QIU Q Y, YU X, et al. Semi-supervised patent text classification method based on improved tri-training algorithm[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(2): 331-339.
[25] HUA W, WANG S, ZHAO Y, et al. Semi-supervised PolSAR classification based on improved tri-training[C]//Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium, 2017: 3937-3940. |