[1] 陈婧扬. 新媒体舆论场主流媒体情绪传播管理与引导研究[D]. 上海: 上海大学, 2021.
CHEN J Y. Research on the management and guidance of mainstream media emotion communication in the new media public opinion field[D]. Shanghai: Shanghai University, 2021.
[2] DIETER D. Irony, disruption and moral imperfection[J]. Ethical Theory and Moral Practice, 2020, 23(3/4): 545-559.
[3] PENG W, ADIKARI A, ALAHAKOON D, et al. Discovering the influence of sarcasm in social media responses[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2019, 9: 201129817.
[4] TIV M, ROUILLARD V, VINGRON N, et al. Global second language proficiency predicts self-perceptions of general sarcasm use among bilingual adults[J]. Journal of Language and Social Psychology, 2019, 38(4): 459-478.
[5] REN L, XU B, LIN H F, et al. Sarcasm detection with sentiment semantics enhanced multi-level memory network[J]. Neurocomputing, 2020, 401: 320-326.
[6] 缪亚林, 姬怡纯, 张顺, 等. CNN-BiGRU模型在中文短文本情感分析的应用[J]. 情报科学, 2021, 39(4): 85-91.
MIAO Y L, JI Y C, ZHANG S, et al. Application of CNN-BiGRU model in Chinese short text sentiment analysis[J]. Information Science, 2021, 39(4): 85-91.
[7] SON L H, KUMAR A, SANGWAN S R, et al. Sarcasm detection using soft attention-based bidirectional long short-term memory model with convolution network[J]. IEEE Access, 2019, 7: 23319-23328.
[8] 卢欣, 李旸, 王素格. 融合语言特征的卷积神经网络的反讽识别方法[J]. 中文信息学报, 2019, 33(5): 31-38.
LU X, LI Y, WANG S G. Linguistic features enhanced convolutional neural networks for irony recognition[J]. Journal of Chinese Information Processing, 2019, 33(5): 31-38.
[9] ZHANG S W, ZHANG X Z, ROSSO P. Irony detection via sentiment-based transfer learning[J]. Information Processing & Management, 2019, 56(5): 1633-1644.
[10] 杨善良, 常征. 基于图注意力神经网络的中文隐式情感分析[J]. 计算机工程与应用, 2021, 57(24): 161-167.
YANG S L, CHANG Z. Chinese implicit sentiment analysis based on graph attention neural network[J]. Computer Engineering and Applications, 2021, 57(24): 161-167.
[11] SAIT A R W, ISHAK M K. Deep learning with natural language processing enabled sentimental analysis on sarcasm classification[J]. Computer Systems Science and Engineering, 2023, 44(3): 2553-2567.
[12] DONG Y F, ZHANG Y T, LI J, et al. DC-BiGRU-CNN algorithm for irony recognition in Chinese social comments[J]. Mathematical Problems in Engineering, 2022(1): 1-14.
[13] 张军, 张丽, 沈凡凡, 等. RoBERTa融合BiLSTM及注意力机制的隐式情感分析[J]. 计算机工程与应用, 2022, 58(23): 142-150.
ZHANG J, ZHANG L, SHEN F F, et al. Implicit sentiment analysis based on RoBERTa fused with BiLSTM and attention mechanism[J]. Computer Engineering and Applications, 2022, 58(23): 142-150.
[14] 潘宏鹏, 汪东, 刘忠轶, 等. 考虑反讽语义识别的协同双向编码舆情评论情感分析研究[J]. 情报杂志, 2022, 41(5): 99-105.
PAN H P, WANG D, LIU Z Y, et al. Public opinion comments sentiment analysis research considering ironic semantic recognition based on the collaborative BERT[J]. Journal of Intelligence, 2022, 41(5): 99-105.
[15] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2019: 4171-4186.
[16] JIANG X C, SONG C, XU Y C, et al. Research on sentiment classification for netizens based on the BERT-BiLSTM-TextCNN model[J]. PeerJ Computer Science, 2022, 8: 1005.
[17] ABDEL-SALAM S, RAFEA A. Performance study on extractive text summarization using BERT models[J]. Information, 2022, 13(2): 67.
[18] WU X Q, XIA Y, ZHU J H, et al. A study of BERT for context-aware neural machine translation[J]. Machine Learning, 2022, 111(3): 917-935.
[19] XU F, ZHANG X F, XIN Z H, et al. Investigation on the Chinese text sentiment analysis based on convolutional neural networks in deep learning[J]. Computers, Materials, & Continua, 2019, 58(3): 697-709.
[20] CHEN H L, LI SHI, WU P H, et al. Fine-grained sentiment analysis of Chinese reviews using LSTM network[J]. Journal of Engineering Science and Technology Review, 2018, 11(1): 174-179.
[21] CHENG Y Y, CHEN Y M, YEH W C, et al. Valence and arousal-infused bi-directional LSTM for sentiment analysis of government social media management[J]. Applied Sciences-Basel, 2021, 11(2): 1-14.
[22] JIANG M, ZHANG W, ZHANG M, et al. An LSTM-CNN attention approach for aspect-level sentiment classification[J]. Journal of Computational Methods in Sciences and Engineering, 2019, 19(4): 859-868.
[23] KUMAR S N K, MALARVIZHI N. Bi-directional LSTM-CNN combined method for sentiment analysis in part of speech tagging (PoS)[J]. International Journal of Speech Technology, 2020, 23(2): 373-380. |